Species richness, geographic distribution, pressures, and threats to bats in the Caatinga drylands of Brazil

Biological Conservation - Tập 221 - Trang 312-322 - 2018
Ulremberg Barbosa Teodoro da Silva1, Mariana Delgado-Jaramillo1,2, Ludmilla Moura de Souza Aguiar3, Enrico Bernard1
1Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Brazil
2Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Brazil
3Departmento de Zoologia, Universidade de Brasília, Brazil

Tài liệu tham khảo

Arias-Coyotl, 2006, Effectiveness of bats as pollinators of Stenocereus stellatus (Cactaceae) in wild, managed in situ, and cultivated populations in La Mixteca Baja, central Mexico, Am. J. Bot., 93, 1675, 10.3732/ajb.93.11.1675 Bawa, 1985, Reproductive biology of tropical lowland rain forest trees. II. Pollination systems, Am. J. Bot., 72, 345 Bernard, 2011, Discovering the Brazilian bat fauna: a task for two centuries?, Mammal Rev., 41, 23, 10.1111/j.1365-2907.2010.00164.x Bernard, 2007, Bats in a fragmented landscape: species composition, diversity and habitat interactions in savannas of Santarem, Central Amazonia, Brazil, Biol. Conserv., 134, 332, 10.1016/j.biocon.2006.07.021 Bernard, 2014, Downgrading, downsizing, degazettement, and reclassification of protected areas in Brazil, Conserv. Biol., 28, 939, 10.1111/cobi.12298 Brum, 2017, Global priorities for conservation across multiple dimensions of mammalian diversity, PNAS, 114, 7641, 10.1073/pnas.1706461114 Carvalho-Neto, 2016, The heterogeneity of Caatinga biome: an overview of the bat fauna, Mammalia, 81, 257, 10.1515/mammalia-2015-0046 Cosson, 1999, Effects of forest fragmentation on frugivorous and nectarivorus bats in French Guiana, J. Trop. Ecol., 15, 515, 10.1017/S026646749900098X Cunto, 2012, Neotropical bats as indicators of environmental disturbance: what is the emerging message?, Acta Chiropterologica, 14, 143, 10.3161/150811012X654358 Dawson, 2011, Beyond predictions: biodiversity conservation in a changing climate, Science, 332, 53, 10.1126/science.1200303 Delgado-Jaramillo, 2017, New records, potential distribution, and conservation of the near threatened cave bat Natalus macrourus in Brazil, Oryx, 52, 1 ESRI, 2015 Farneda, 2015, Trait-related responses to habitat fragmentation in Amazonian bats, J. Appl. Ecol., 52, 1381, 10.1111/1365-2664.12490 Guisan, 2013, Predicting species distributions for conservation decisions, Ecol. Lett., 16, 1424, 10.1111/ele.12189 Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276 Ibarra-Cerdena, 2005, Pollination ecology of Stenocereus queretaroensis (Cactaceae), a chiropterophilous columnar cactus, in a tropical dry forest of Mexico, Am. J. Bot., 92, 503, 10.3732/ajb.92.3.503 ICMBIO—Instituto Chico Mendes de Conservação da Biodiversidade, 2014, Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção, 245, 121 Jung, 2016, Urbanisation and its effects on bats—a global meta-analysis, 13 Korine, 2016, Bats and water: anthropogenic alterations threaten global bat populations, 215 Leal, 2005, Mudando o curso da conservação da biodiversidade na caatinga do Nordeste do Brasil, Megadiversidade, 1, 139 Machado, 2004, Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest, Ann. Bot., 94, 365, 10.1093/aob/mch152 Martins, 2016, Reproductive biology of Cipocereus minensis (Cactaceae)—a columnar cactus endemic to rupestrian fields of a Neotropical savannah, Flora, 218, 62, 10.1016/j.flora.2015.11.010 MCTIC—Ministério da Ciência, Tecnologia e Inovação Metz, 1978, Basic principles of ROC analysis, Semin. Nucl. Med., 8, 283, 10.1016/S0001-2998(78)80014-2 Miles, 2006, A global overview of the conservation status of tropical dry forests, J. Biogeogr., 33, 491, 10.1111/j.1365-2699.2005.01424.x MMA/SBF—Ministério do Meio Ambiente/Secretaria de Biodiversidade e Florestas, 2007 MMA—Ministério do Meio Ambiente, 2011 Moratelli, 2015, A new species of nectar-feeding bat, genus Lonchophylla, from the Caatinga of Brazil (Chiroptera, Phyllostomidae), ZooKeys, 514, 73, 10.3897/zookeys.514.10013 Muylaert, 2016, Threshold effect of habitat loss on bat richness in cerrado-forest landscapes, Ecol. Appl., 26, 1854, 10.1890/15-1757.1 Newbold, 2014, A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures, Proc. R. Soc. B Biol. Sci., 281, 10.1098/rspb.2014.1371 Nogueira, 2014, Checklist of Brazilian bats, with comments on original records, Check List, 10, 808, 10.15560/10.4.808 Nori, 2015, Amphibian conservation, land-use changes and protected areas: a global overview, Biol. Conserv., 191, 367, 10.1016/j.biocon.2015.07.028 Oliveira, 2017, The financial needs vs. the realities of in situ conservation: an analysis of federal funding for protected areas in Brazil's Caatinga, Biotropica, 49, 10.1111/btp.12456 Oliveira, 2000, Reproductive biology of woody plants in a cerrado community of central Brazil, Flora, 195, 311, 10.1016/S0367-2530(17)30990-8 Pacifici, 2017, Species' traits influenced their response to recent climate change, Nat. Clim. Chang., 10.1038/nclimate3223 Paglia, 2012, Lista anotada dos mamíferos do Brasil. 2nd ed, Occas. Pap. Conserv. Biol., 6, 1 PBMC—Painel Brasileiro de Mudanças Climáticas, 2015, Capítulo 9—Mudanças ambientais de curto e longo prazo: projeções, reversibilidade e atribuição, 1, 322 Pearson, 2007, Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, J. Biogeogr., 34, 102, 10.1111/j.1365-2699.2006.01594.x Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026 Porfirio, 2014, Improving the use of species distribution models in conservation planning and management under climate change, PLoS One, 9, 10.1371/journal.pone.0113749 Portillo-Quintero, 2010, Extent and conservation of tropical dry forests in the Americas, Biol. Conserv., 143, 144, 10.1016/j.biocon.2009.09.020 Radosavljevic, 2014, Making better Maxent models of species distributions: complexity, overfitting and evaluation, J. Biogeogr., 41, 629, 10.1111/jbi.12227 Ribeiro, 2016, Assessing mammal exposure to climate change in the Brazilian Amazon, Plos One, 11, 10.1371/journal.pone.0165073 Rocha, 2017, Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscape-scale effects, Landsc. Ecol., 32, 31, 10.1007/s10980-016-0425-3 Sánchez-Azofeifa, 2005, Research priorities for Neotropical dry forests, Biotropica, 37, 477 Seddon, 2016, Sensitivity of global terrestrial ecosystems to climate variability, Nature, 531, 229, 10.1038/nature16986 Sherwin, 2013, The impact and implications of climate change for bats, Mammal Rev., 43, 171, 10.1111/j.1365-2907.2012.00214.x Silva, 2004 Soares-Filho, 2014, Cracking Brazil's forest code, Science, 344, 363, 10.1126/science.1246663 Speakman, 2003, Physiological ecology and energetics of bats, 430 Tabarelli, 2004, Conhecimento sobre plantas lenhosas da Caatinga: lacunas geográficas e ecológicas, 101 Tollefson, 2016, Political upheaval threatens Brazil's environmental protections, Nature, 539, 147, 10.1038/539147a WCS—Wildlife Conservation Society, and CIESIN—Center for International Earth Science Information Network—CIESIN—Columbia University, 2005 Wiens, 2016, Climate-related local extinctions are already widespread among plant and animal species, PLoS Biol., 14, 10.1371/journal.pbio.2001104 Williams-Guillén, 2016, Bats in the anthropogenic matrix: challenges and opportunities for the conservation of Chiroptera and their ecosystem services in agricultural landscapes, 151