Prototype systems for rechargeable magnesium batteries

Nature - Tập 407 Số 6805 - Trang 724-727 - 2000
Doron Aurbach1, Zhengze Lu1, Alex Schechter1, Y. Gofer1, Haim Gizbar1, R. Turgeman1, Yair Cohen1, M. Moshkovich1, Elena Levi1
1Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lu, Z., Schechter, A., Moshkovich, M. & Aurbach, D. On the electroanalytical behavior of magnesium in a polar aprotic electrolyte solution. J. Electroanal. Chem. 466, 203 –217 (1999).

Gendler, J. D. & Pletcher, D. Studies using microelectrodes of the Mg(++)/Mg couple in tetrahydrofurane and propylene carbonate. J. Electroanal. Chem. 199, 93– 100 (1986).

Brown, O. R. & McIntyre, R. The magnesium and magnesium amalgam electrodes in aprotic organic solvents. A kinetic study. Electrochim. Acta 30, 627–633 ( 1985).

Novak, P., Tuhof, R. & Haas, O. Magnesium insertion electrodes of rechargeable nonaqueous batteries. A competitive alternative to lithium? Electrochim. Acta 45, 351–367 (1999).

Aurbach, D., Moshkovich, M., Schechter, A. & Turgeman, R. The study of magnesium deposition and dissolution processes in ethereal Grignard salt solution using simultaneous EQCM-EIS and in situ FTIR spectroscopic measurements. Electrochem. Solid State Lett. 3, 31–34 (2000).

Aurbach, D. et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J. Electrochem. Soc. 145, 3024–3034 ( 1998).

Aurbach, D. et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power Sources 81–82, 95–111 (1999).

Connor, J. H., Reid, W. E. & Wood, G. B. Electrodeposition of metals from organic solutions: electrodeposition of magnesium and magnesium alloys. J. Electrochem. Soc. 104, 38–41 ( 1957).

Liebenow, C. Reversibility of electrochemical magnesium deposition from Grignard salt solutions. J. Appl. Chem. 27, 221– 225 (1997).

Gregory, T., Hoffman, R. & Winterton, R. Nonaqueous electrochemistry of magnesium. Application to energy storage. J. Electrochem. Soc. 137, 775–780 (1990).

Blomgren, J. in Nonaqueous Electrochemistry Ch. 2 (ed. Aurbach, D.) 53– 79 (Dekker, New York, 1999).

Aurbach, D. & Moshkovich, M. The study of Li deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance (EQCM). J. Electrochem. Soc. 145 , 2629–2639 (1998).

Aurbach, D., Goren, E. & Chusid, O. The application of in situ FTIR spectroscopy to the study of surface films formed on lithium and noble metal at low potentials in Li battery electrolytes. J. Electrochem. Soc. 138, L6–L9 (1991).

Aurbach, D., Weissman, I., Schechter, A. & Cohen, H. XPS studies of Li surfaces prepared in several important electrolyte solutions. A comparison with previous studies by FTIR spectroscopy. Langmuir 12, 3991–4007 ( 1996).

Cohen, Y. & Aurbach, D. The use of a special work station for in situ measurements of highly reactive electrochemical systems by atomic force and scanning tunneling microscopes (AFM, STM). Rev. Sci. Instrum. 70, 4668–4675 (1999).

Yvon, K. in Current Topics in Material Science Vol. 3 (ed. Kaldis, E.) 53–129 (North-Holland, Amsterdam, 1979).

Chevrel, R., Sergent, M. & Prigent, J. Sur le nouvelles phases sulfurèes ternaires du Molybdène. J. Solid State Chem. 3, 515–519 (1971).

Ritter, C., Gocke, E., Fischer, C. & Schollhorn, R. Neutron diffraction study of the crystal structure of lithium intercalated Chevrel phases. Mater. Res. Bull. 27, 1217–1225 (1992).

Linden, D. in Handbook of Batteries 2nd edn Ch. 23 (ed. Linden, D.) 23.3– 23.22 (McGraw Hill, New York, 1994).