Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland
Tài liệu tham khảo
Andriesse, 2006, Acid sulfate soils: distribution and extent
Anisfeld, 1997, Impacts of flow restriction on salt marshes: an instance of acidification, Environ. Sci. Technol., 31, 1650, 10.1021/es960490o
APHA, 1998
Åström, 2000, Impact of isostatic uplift and ditching of sulfidic sediments on the hydrochemistry of major and trace elements and sulfur isotope ratios in streams, western Finland, Environ. Sci. Technol., 34, 1182, 10.1021/es990986g
Åström, 2007, Hydrochemical effects of surface liming, controlled drainage and lime-filter drainage on boreal acid sulfate soils, Water, Air Soil Pollut., 179, 107, 10.1007/s11270-006-9217-8
Åström, 2010, Lanthanoid behaviour in an acidic landscape, Geochim. Cosmochim. Acta, 74, 829, 10.1016/j.gca.2009.10.041
Benning, 2000, Reaction pathways in the Fe–S system below 100°C, Chem. Geol., 167, 25, 10.1016/S0009-2541(99)00198-9
Boman, 2009, Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide–the role of artificial drainage, Chem. Geol., 255, 68, 10.1016/j.chemgeo.2008.06.006
Boman, 2010, Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide, Geochim. Cosmochim. Acta, 74, 1268, 10.1016/j.gca.2009.11.026
Boursiquot, 2001, The dry oxidation of tetragonal FeS, mackinawite, Phys. Chem. Mineral., 28, 600, 10.1007/s002690100193
Burton, 2006, Elemental sulfur in drain sediments associated with acid sulfate soils, Appl. Geochem., 21, 1240, 10.1016/j.apgeochem.2006.02.020
Burton, 2006, Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils, Geochim. Cosmochim. Acta, 70, 5445, 10.1016/j.gca.2006.08.016
Burton, 2006, Reduced inorganic sulfur speciation in drain sediments from acid-sulfate soil landscapes, Environ. Sci. Technol., 40, 888, 10.1021/es0516763
Burton, 2006, Acid-volatile sulfide oxidation in coastal floodplain drains: iron–sulfur cycling and effects on water quality, Environ. Sci. Technol., 40, 1217, 10.1021/es0520058
Burton, 2007, Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands, Geochim. Cosmochim. Acta, 71, 4456, 10.1016/j.gca.2007.07.007
Burton, 2008, Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil, Chem. Geol., 253, 64, 10.1016/j.chemgeo.2008.04.006
Burton, 2008, A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils, Appl. Geochem., 23, 2759, 10.1016/j.apgeochem.2008.07.007
Burton, 2008, Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron–sulfide formation, Geochim. Cosmochim. Acta, 72, 4551, 10.1016/j.gca.2008.06.019
Burton, 2008, Iron-sulfide and trace element behaviour in sediments of Coombabah Lake, Moreton Bay (Australia), Mar. Pollut. Bull., 56, 1353, 10.1016/j.marpolbul.2008.04.012
Burton, 2009, Iron-monosulfide oxidation in natural sediments: resolving microbially-mediated S transformations using XANES, electron microscopy and selective extractions, Environ. Sci. Technol., 43, 3128, 10.1021/es8036548
Burton E. D. Johnston S. G. and Bush R. T. (2011) Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility. Geochim. Cosmochim. Acta.
Bush, 1997, Morphology and behaviour of greigite from a Holocene sediment in Eastern Australia, Australian J. Soil Res., 35, 853, 10.1071/S96114
Canfield, 1998, Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria, Limnol. Oceanogr., 43, 253, 10.4319/lo.1998.43.2.0253
Carey, 2005, The role of soluble Fe(III) in the cycling of iron and sulfur in coastal marine sediments, Limnol. Oceanogr., 50, 1129, 10.4319/lo.2005.50.4.1129
Claff, 2010, A sequential extraction procedure for acid-sulfate soils: partitioning of iron, Geoderma, 155, 224, 10.1016/j.geoderma.2009.12.002
Cline, 1969, Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454, 10.4319/lo.1969.14.3.0454
Collins, 2010, Schwertmannite stability in acidified coastal environments, Geochim. Cosmochim. Acta, 74, 482, 10.1016/j.gca.2009.10.014
Dann, 1998, A high performance double-crystal monochromator soft X-ray beamline, J. Synchrotron Rad., 5, 664, 10.1107/S0909049597017135
Dent, 1995, A world perspective on acid sulfate soils, Geoderma, 67, 263, 10.1016/0016-7061(95)00013-E
Donald, 1999, Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite, Geochim. Cosmochim. Acta, 63, 2019, 10.1016/S0016-7037(99)00140-4
Fossing, 1989, Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method, Biogeochemistry, 8, 205, 10.1007/BF00002889
Fossing, 1992, Sulfur isotope exchange between 35S-labeled inorganic sulfur compounds in anoxic marine sediments, Mar. Chem., 38, 117, 10.1016/0304-4203(92)90071-H
Fossing, 2000, Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia), Geochim. Cosmochim. Acta, 64, 897, 10.1016/S0016-7037(99)00349-X
Green, 2006, Treatment of acid sulfate soil drainage by direct application of alkaline reagents, Water Air Soil Pollut., 178, 59, 10.1007/s11270-006-9131-0
Harmandas, 1998, Crystal growth of pyrite in aqueous solutions: inhibiting by organophosphorus compounds, Langmuir, 14, 1250, 10.1021/la970354c
Hicks, 2009, Effect of season and landscape position on the aluminium geochemistry of tropical acid sulfate soil leachate, Australian J. Soil Res., 47, 137, 10.1071/SR06106
Howarth, 1979, Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism, Science, 203, 49, 10.1126/science.203.4375.49
Hsieh, 2002, Analysis of sulfides in the presence of ferric minerals by diffusion methods, Chem. Geol., 182, 195, 10.1016/S0009-2541(01)00282-0
Hunger, 2007, Greigite: a true intermediate on the polysulfide pathway to pyrite, Geochem. Trans., 8, 1, 10.1186/1467-4866-8-1
Johnston, 2005, The effects of controlled tidal exchange on improving drainage water quality in acid sulfate soil backswamps, Agric. Water Manage., 73, 87, 10.1016/j.agwat.2004.10.005
Johnston, 2009, Changes in water quality following tidal inundation of coastal lowland acid sulfate soil landscapes, Estuar. Coast. Shelf Sci., 81, 257, 10.1016/j.ecss.2008.11.002
Johnston, 2009, Contemporary pedogenesis of severely degraded tropical acid sulfate soils after introduction of regular tidal inundation, Geoderma, 149, 335, 10.1016/j.geoderma.2008.12.013
Johnston, 2010, Abundance and fractionation of Al, Fe and trace metals following tidal inundation of a tropical acid sulfate soil, Appl. Geochem., 25, 323, 10.1016/j.apgeochem.2009.11.015
Johnston, 2010, Arsenic mobilisation in a seawater inundated acid sulfate soil, Environ. Sci. Technol., 44, 2016, 10.1021/es903114z
Johnston, 2011, Iron geochemical zonation in a tidally inundated acid sulfate soil wetland, Chem. Geol., 280, 257, 10.1016/j.chemgeo.2010.11.014
Keene, 2011, Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland, Biogeochem., 103, 263, 10.1007/s10533-010-9461-2
Keene, 2010, Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Austr. Mar. Pollut. Bull., 60, 620, 10.1016/j.marpolbul.2010.02.006
Kirk, 2010, Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors, Geochim. Cosmochim. Acta, 74, 2538, 10.1016/j.gca.2010.02.002
Kocar, 2010, Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite, Geochim. Cosmochim. Acta., 74, 980, 10.1016/j.gca.2009.10.023
Luther, 1991, Pyrite synthesis via polysulfide compounds, Geochim. Cosmochim. Acta, 55, 2839, 10.1016/0016-7037(91)90449-F
Macdonald, 2004, Impacts of runoff from sulphuric soils on sediment chemistry in an estuarine lake, Sci. Total Environ., 329, 115, 10.1016/j.scitotenv.2004.02.016
Macdonald, 2007, Discharge of weathering products from acid sulfate soils after a rainfall event, Tween River, eastern Australia, Appl. Geochem., 22, 2695, 10.1016/j.apgeochem.2007.07.004
Marnette, 1993, Pyrite formation in two freshwater systems in the Netherlands, Geochim. Cosmochim. Acta, 57, 4165, 10.1016/0016-7037(93)90313-L
Österholm, 2008, Meteorological impacts on the water quality in the Pajuluoma acid sulphate soil area, W. Finland, Appl. Geochem., 23, 1594, 10.1016/j.apgeochem.2008.01.011
Pallud, 2006, Kinetics of microbial sulfate reduction in estuarine sediments, Geochim. Cosmochim. Acta, 70, 1148, 10.1016/j.gca.2005.11.002
Peiffer, 1992, Kinetics and mechanism of the reaction of H2S with lepidocrocite, Environ. Sci. Technol., 26, 2408, 10.1021/es00036a011
Percival, 1997, Measurement of physical properties of sediments
Perry, 1993, Sulphur speciation and pyrite formation in meromictic ex-fjords, Geochim. Cosmochim. Acta, 57, 4405, 10.1016/0016-7037(93)90491-E
Portnoy, 1997, Biogeochemical effects of sea water restoration to diked salt marshes, Ecol. Appl., 7, 1054, 10.1890/1051-0761(1997)007[1054:BEOSRT]2.0.CO;2
Powell, 2005, A review of acid sulfate soil impacts, actions and policies that impact on water quality in the Great Barrier Reef catchments, including a case study on remediation at East Trinity, Mar. Pollut. Bull., 51, 149, 10.1016/j.marpolbul.2004.10.047
Pyzik, 1981, Sedimentary iron monosulfide: kinetics and mechanism of formation, Geochim. Cosmochim. Acta, 45, 687, 10.1016/0016-7037(81)90042-9
Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron. Rad., 12, 537, 10.1107/S0909049505012719
Rickard, 1974, Kinetics and mechanism of the sulfidization of goethite, Am. J. Sci., 274, 941, 10.2475/ajs.274.8.941
Rickard, 1975, Kinetics and mechanism of pyrite formation at low temperatures, Am. J. Sci., 275, 636, 10.2475/ajs.275.6.636
Rickard, 1997, Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solution between 25 and 125°C: the rate equation, Geochim. Cosmochim. Acta, 61, 115, 10.1016/S0016-7037(96)00321-3
Rickard, 2006, The composition of nanoparticulate mackinawite, tetragonal iron(II) monosulfide, Chem. Geol., 235, 286, 10.1016/j.chemgeo.2006.07.004
Rickard, 1997, Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solution between 25 and 125°C: the mechanism, Geochim. Cosmochim. Acta, 61, 135, 10.1016/S0016-7037(96)00322-5
Rickard, 2001, A novel iron sulphide mineral switch and its implications to earth and planetary science, Earth Planet. Sci. Lett., 189, 85, 10.1016/S0012-821X(01)00352-1
Rickard, 2005, Acid volatile sulfide (AVS), Mar. Chem., 97, 141, 10.1016/j.marchem.2005.08.004
Rickard, 2007, Botanical constraints on pyrite formation, Chem. Geol., 236, 228, 10.1016/j.chemgeo.2006.09.011
Rosicky, 2004, Soil properties in and around acid sulfate scalds in the coastal floodplains of New South Wales, Australia, Austr. J. Soil Res., 42, 595, 10.1071/SR03078
Rickard, 2007, Chemistry of iron sulfides, Chem. Rev., 102, 514, 10.1021/cr0503658
Roychoudhury, 2003, Pyritization: a paleoenvironmental and redox proxy reevaluated, Estuar. Coast. Shelf Sci., 57, 1183, 10.1016/S0272-7714(03)00058-1
Roychoudhury, 2003, Kinetics of microbially mediated reactions: dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA), Estuar. Coast. Shelf Sci., 56, 1001, 10.1016/S0272-7714(02)00325-6
Schippers, 1999, Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur, Appl. Environ. Microbiol., 65, 319, 10.1128/AEM.65.1.319-321.1999
Schoonen, 1991, Reactions forming pyrite and marcasite from solutions: I. Nucleation of FeS2 below 100°C, Geochim. Cosmochim. Acta, 55, 1495, 10.1016/0016-7037(91)90122-L
Schoonen, 1991, Reactions forming pyrite and marcasite from solutions: II. FeS precursors below 100 C, Geochim. Cosmochim. Acta, 55, 1505, 10.1016/0016-7037(91)90123-M
Skinner, 1964, Greigite, the thio-spinel of iron; A new mineral, Am. Mineral., 49, 543
Smith, 2004, Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment, Appl. Geochem., 19, 1837, 10.1016/j.apgeochem.2004.04.004
Sullivan, 1997, Quantitative microanalysis of rough soil surfaces in the scanning electron microscope using a peak-to-background method, Soil Sci., 162, 749, 10.1097/00010694-199710000-00008
Sullivan, 2004, Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia, Mar. Freshwater Res., 55, 727, 10.1071/MF04072
Tulau, 2002, Agricultural drainage in acid sulfate soil backswamps in New South Wales, Australia–technical, regulatory and policy responses
van Breemen, 1975, Acidification and deacidification of coastal plain soils as a result of periodic flooding, J. Soil Sci. Soc. Am., 39, 1153, 10.2136/sssaj1975.03615995003900060035x
Wallman, 1993, New procedure for determining reactive Fe(III) and Fe(II) minerals in sediments, Limnol. Oceanogr., 38, 1803, 10.4319/lo.1993.38.8.1803
Wang, 1996, Pyrite formation under conditions approximating those in anoxic sediments. I. Pathway and morphology, Mar. Chem., 52, 99, 10.1016/0304-4203(95)00082-8
Welch, 2007, Jarosite dissolution I—trace cation flux in acid sulfate soils, Chem. Geol., 245, 183, 10.1016/j.chemgeo.2007.07.028
Welch, 2008, Jarosite dissolution II—Reaction kinetics, stoichiometry and acid flux, Chem. Geol., 254, 73, 10.1016/j.chemgeo.2008.06.010
Welch, 2009, Mineralogical control of rare earth elements in acid sulfate soils, Geochim. Cosmochim. Acta, 73, 44, 10.1016/j.gca.2008.10.017
Wilkin, 1996, Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species, Geochim. Cosmochim. Acta, 60, 4167, 10.1016/S0016-7037(97)81466-4
Wilkin, 2006, Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland, Chem. Geol., 228, 156, 10.1016/j.chemgeo.2005.11.022
Yao, 1996, Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater, Mar. Chem., 52, 1, 10.1016/0304-4203(95)00072-0