A global-scale analysis of the MISR Level-3 aerosol optical depth (AOD) product: Comparison with multi-platform AOD data sources

Atmospheric Pollution Research - Tập 12 - Trang 101238 - 2021
Ke Gui1, Huizheng Che1, Yaqiang Wang1, Xiangao Xia2, Brent N. Holben3, Philippe Goloub4, Emilio Cuevas-Agulló5, Wenrui Yao1, Yu Zheng1, Hujia Zhao6, Lei Li1, Xiaoye Zhang1
1State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
2Key Laboratory for Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
3NASA/Goddard Space Flight Center, Greenbelt, MD, USA
4Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, 59655, Villeneuve d’Ascq, France
5Centro de Investigación Atmosférica de Izaña, AEMET, 38001, Santa Cruz de Tenerife, Spain
6Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China

Tài liệu tham khảo

Ahn, 2014, Assessment of OMI near-UV aerosol optical depth over land, J. Geophys. Res., 10.1002/2013JD020188 Buchard, 2017, The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation, J. Clim., 30, 6851, 10.1175/JCLI-D-16-0613.1 Che, 2019, Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth, Atmos. Chem. Phys., 19, 10497, 10.5194/acp-19-10497-2019 Che, 2019, Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network, Atmos. Chem. Phys., 19, 11843, 10.5194/acp-19-11843-2019 Che, 2015, Ground-based aerosol climatology of China: aerosol optical depths from the China aerosol remote sensing network (CARSNET) 2002-2013, Atmos. Chem. Phys., 15, 7619, 10.5194/acp-15-7619-2015 Che, 2009, Instrument calibration and aerosol optical depth validation of the China aerosol remote sensing network, J. Geophys. Res. Atmos., 114, D03206, 10.1029/2008JD011030 Chen, 2008, Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols, J. Geophys. Res. Atmos. David, 2018, Aerosol optical depth over India, J. Geophys. Res. Atmos., 10.1002/2017JD027719 Diner, 1998, Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview, IEEE Trans. Geosci. Rem. Sens., 36, 1072, 10.1109/36.700992 Diner, 2005, Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land, Remote Sens. Environ., 94, 155, 10.1016/j.rse.2004.09.009 Eck, 1999, Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res. Atmos., 104, 31333, 10.1029/1999JD900923 Garay, 2020, Introducing the 4.4km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product, Atmos. Meas. Tech., 13, 593, 10.5194/amt-13-593-2020 Giles, 2019, Advancements in the Aerosol Robotic Network (AERONET) Version 3 database - automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169, 10.5194/amt-12-169-2019 Gui, 2017, Water vapor variation and the effect of aerosols in China, Atmos. Environ., 165, 322, 10.1016/j.atmosenv.2017.07.005 Gui, 2019, Satellite-derived PM2.5 concentration trends over Eastern China from 1998 to 2016 : relationships to emissions and meteorological parameters, Environ. Pollut., 247, 1125, 10.1016/j.envpol.2019.01.056 Gui, 2021, Seasonal variability and trends in global type-segregated aerosol optical depth as revealed by MISR satellite observations, Sci. Total Environ., 787, 147543, 10.1016/j.scitotenv.2021.147543 Gui, 2021, The significant contribution of small-sized and spherical aerosol particles to the decreasing trend in total aerosol optical depth over land from 2003 to 2018, Engineering Gueymard, 2020, Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations, Atmos. Environ., 225, 117216, 10.1016/j.atmosenv.2019.117216 Hu, 2021, Temporal evolution of aerosols and their extreme events in polluted Asian regions during Terra's 20-year observations, Remote Sens. Environ., 263, 112541, 10.1016/j.rse.2021.112541 Huang, 2021, Aerosol as a critical factor causing forecast biases of air temperature in global numerical weather prediction models, Sci. Bull., 10.1016/j.scib.2021.05.009 Holben, 1998, AERONET—a federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1, 10.1016/S0034-4257(98)00031-5 Inness, 2019, The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515, 10.5194/acp-19-3515-2019 Jiang, 2018, Contrasting effects on deep convective clouds by different types of aerosols, Nat. Commun., 9, 3874, 10.1038/s41467-018-06280-4 Jin, 2020, Long-term trends of high aerosol pollution events and their climatic impacts in North America using multiple satellite retrievals and Modern-Era retrospective analysis for research and applications version 2, J. Geophys. Res. Atmos., 125, 10.1029/2019JD031137 Kahn, 2001, Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean, J. Geophys. Res. Atmos., 106, 18219, 10.1029/2000JD900497 Kahn, 2015, An analysis of global aerosol type as retrieved by MISR, J. Geophys. Res., 120, 4248, 10.1002/2015JD023322 Kahn, 2010, Multiangle imaging SpectroRadiometer global aerosol product assessment by comparison with the aerosol robotic network, J. Geophys. Res. Atmos., 115, 10.1029/2010JD014601 Kahn, 2005, Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations, J. Geophys. Res. Atmos., 110, 1, 10.1029/2004JD004706 Kaufman, 2006, Smoke and pollution aerosol effect on cloud cover, Science (80-, 313, 655, 10.1126/science.1126232 Kendall, 1957 Kim, 2020, Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation, Sci. Adv., 6, 1 King, 2003, Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geosci. Rem. Sens., 10.1109/TGRS.2002.808226 Klingmüller, 2016, Aerosol optical depth trend over the Middle East, Atmos. Chem. Phys., 16, 5063, 10.5194/acp-16-5063-2016 Koren, 2012, Aerosol-induced intensification of rain from the tropics to the mid-latitudes, Nat. Geosci., 5, 118, 10.1038/ngeo1364 Lee, 2011, Atmospheric science: aerosols, clouds and climate, Nat. Geosci., 4, 826, 10.1038/ngeo1340 Levy, 2013, The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989, 10.5194/amt-6-2989-2013 Li, 2014, Recent trends in aerosol optical properties derived from AERONET measurements, Atmos. Chem. Phys., 14, 12271, 10.5194/acp-14-12271-2014 Liu, 2017, Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau, Nat. Clim. Change, 7, 190, 10.1038/nclimate3220 Mann, 1945 O'Neill, 2003, Spectral discrimination of coarse and fine mode optical depth, J. Geophys. Res. Atmos., 108, 1, 10.1029/2002JD002975 Ramanathan, 2008, Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221, 10.1038/ngeo156 Sayer, 2013, Validation and uncertainty estimates for modis collection 6 "deep blue" aerosol data, J. Geophys. Res. Atmos., 118, 10.1002/jgrd.50600 Sayer, 2018, Validation of SOAR VIIRS over-water aerosol retrievals and context within the global satellite aerosol data record, J. Geophys. Res. Atmos., 123 Schutgens, 2017, On the spatio-temporal representativeness of observations, Atmos. Chem. Phys., 17, 9761, 10.5194/acp-17-9761-2017 Smirnov, 2002, Optical properties of atmospheric aerosol in maritime environments, J. Atmos. Sci., 501, 10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2 Sogacheva, 2020, Merging regional and global aerosol optical depth records from major available satellite products, Atmos. Chem. Phys., 20, 2031, 10.5194/acp-20-2031-2020 Wang, 2019, Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces, Atmos. Environ., 200, 280, 10.1016/j.atmosenv.2018.12.023 Wei, 2019, Performance of MODIS Collection 6.1 Level 3 aerosol products in spatial-temporal variations over land, Atmos. Environ., 206, 30, 10.1016/j.atmosenv.2019.03.001 Winker, 2010, The calipso mission: a global 3D view of aerosols and clouds, Bull. Am. Meteorol. Soc., 91, 1211, 10.1175/2010BAMS3009.1 Wilks, 2016, The stippling shows statistically significant grid points, Bull. Am. Meteorol. Soc., 97, 2263, 10.1175/BAMS-D-15-00267.1 Witek, 2018, New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water, Atmos. Meas. Tech., 11, 429, 10.5194/amt-11-429-2018 Witek, 2013, Aerosol optical depths over oceans: a view from MISR retrievals and collocated MAN and AERONET in situ observations, J. Geophys. Res. Atmos., 10.1002/2013JD020393 Zhao, 2018, Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets, Atmos. Chem. Phys., 11247, 10.5194/acp-18-11247-2018 Zhao, 2020, Climatology and trends of aerosol optical depth with different particle size and shape in Northeast China from 2001 to 2018, Sci. Total Environ., 142979 Zheng, 2019, Five-year observation of aerosol optical properties and its radiative effects to planetary boundary layer during air pollution episodes in North China: intercomparison of a plain site and a mountainous site in Beijing, Sci. Total Environ.