Innovative origami-based solutions for enhanced quarter-wavelength resonators

Journal of Sound and Vibration - Tập 434 - Trang 379-403 - 2018
Tristan Cambonie1, Emmanuel Gourdon1
1Univ Lyon, ENTPE, LTDS UMR CNRS 5513, 3 Rue Maurice Audin, 69518, Vaulx en Velin Cedex, France

Tài liệu tham khảo

Allard, 2009 H.V Helmholtz Die Lehre von den Tonemp-ndungen als physiologische Grundlagefur die Theorie der Musik. (The doctrine of phonemes as a physiological basis for the theory of music.) Braunschweig, Druck und Verlag von Friedrich Vieweg und Sons (Brunswick, printing and publishing by Friedrich Vieweg and Sons), Germany, 1863. Tang, 1973, Theory of a generalized Helmholtz resonator, J. Sound Vib., 26, 247, 10.1016/S0022-460X(73)80234-2 Hannink, 2004, Optimised sound absorbing trim panels for the reduction of aircraft cabin noise, vol. 62, 1855 Van der Eerden, 2000, Sound absorption and reflection with coupled tubes Field, 1998, Theory and applications of quarter-wave resonators: a prelude to their use for attenuating noise entering buildings through ventilation openings, Appl. Acoust., 53, 117, 10.1016/S0003-682X(97)00035-2 Cambonie, 2018, Bending a quarter wavelength resonator: curvature effects on sound absorption properties, Appl. Acoust., 131, 87, 10.1016/j.apacoust.2017.10.004 Lang, 1989, Origami: complexity increasing, Eng. Sci., 52, 16 Yasuda, 2015, Reentrant origami-based metamaterials with negative Poisson's ratio and bistability, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.185502 Silverberg, 2014, Using origami design principles to fold reprogrammable mechanical metamaterials, Science, 345, 647, 10.1126/science.1252876 Babaee, 2016, Reconfigurable origami-inspired acoustic waveguide, Sci. Adv., 2, 10.1126/sciadv.1601019 Thota, 2017, Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation, J. Appl. Phys., 122, 10.1063/1.4991026 Depollier, 1990, Propagation of low frequency acoustic waves in periodic 2D-lattices of tubes, J. Sound Vib., 142, 153, 10.1016/0022-460X(90)90588-Q Benouhiba, 2017, An origami-based helmoltz resonator for noise control: introduction of the concept and preliminary results ISO 10534-2, 2003 Iwase, 1998 Salissou, 2010, Wideband characterisation of the complex wave number and characteristic impedance of sound absorbers, J. Acoust. Soc. Am., 128, 2868, 10.1121/1.3488307 Mbailassem, 2016 Gourdon, 2010, On the use of porous inclusions to improve the acoustical response of porous materials: analytical model and experimental verification, Appl. Acoust., 71, 283, 10.1016/j.apacoust.2009.11.004 Johnson, 1987, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 379, 10.1017/S0022112087000727 Champoux, 1991, Dynamic tortuosity and bulk modulus in air-sturated porous media, J. Appl. Phys., 70, 1975, 10.1063/1.349482 Bies, 2003 Jaouen, 2017 Panneton, 2006, Acoustical determination of the parameters governing viscous dissipation in porous media, J. Acoust. Soc. Am., 119, 2027, 10.1121/1.2169923 Lagarrigue, 2012 Groby, 2011, Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions, J. Acoust. Soc. Am., 130, 3771, 10.1121/1.3652865 Bécot, 2008, Applications of the dual porosity theory to irregularly shaped porous materials, Acta Acustica united Acustica, 94, 715, 10.3813/AAA.918088 Bonfiglio, 2013, Inversion problems for determining physical parameters of porous materials: overview and comparison between different methods, Acta Acustica united Acustica, 99, 341, 10.3813/AAA.918616 Pompoli, 2017, How reproducible is the acoustical characterization of porous media?, J. Acoust. Soc. Am., 141, 945, 10.1121/1.4976087 Attenborough, 2011, Outdoor ground impedance models, J. Acoust. Soc. Am., 129, 2806, 10.1121/1.3569740 Pierce, 1989