Innovative origami-based solutions for enhanced quarter-wavelength resonators
Tài liệu tham khảo
Allard, 2009
H.V Helmholtz Die Lehre von den Tonemp-ndungen als physiologische Grundlagefur die Theorie der Musik. (The doctrine of phonemes as a physiological basis for the theory of music.) Braunschweig, Druck und Verlag von Friedrich Vieweg und Sons (Brunswick, printing and publishing by Friedrich Vieweg and Sons), Germany, 1863.
Tang, 1973, Theory of a generalized Helmholtz resonator, J. Sound Vib., 26, 247, 10.1016/S0022-460X(73)80234-2
Hannink, 2004, Optimised sound absorbing trim panels for the reduction of aircraft cabin noise, vol. 62, 1855
Van der Eerden, 2000, Sound absorption and reflection with coupled tubes
Field, 1998, Theory and applications of quarter-wave resonators: a prelude to their use for attenuating noise entering buildings through ventilation openings, Appl. Acoust., 53, 117, 10.1016/S0003-682X(97)00035-2
Cambonie, 2018, Bending a quarter wavelength resonator: curvature effects on sound absorption properties, Appl. Acoust., 131, 87, 10.1016/j.apacoust.2017.10.004
Lang, 1989, Origami: complexity increasing, Eng. Sci., 52, 16
Yasuda, 2015, Reentrant origami-based metamaterials with negative Poisson's ratio and bistability, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.185502
Silverberg, 2014, Using origami design principles to fold reprogrammable mechanical metamaterials, Science, 345, 647, 10.1126/science.1252876
Babaee, 2016, Reconfigurable origami-inspired acoustic waveguide, Sci. Adv., 2, 10.1126/sciadv.1601019
Thota, 2017, Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation, J. Appl. Phys., 122, 10.1063/1.4991026
Depollier, 1990, Propagation of low frequency acoustic waves in periodic 2D-lattices of tubes, J. Sound Vib., 142, 153, 10.1016/0022-460X(90)90588-Q
Benouhiba, 2017, An origami-based helmoltz resonator for noise control: introduction of the concept and preliminary results
ISO 10534-2, 2003
Iwase, 1998
Salissou, 2010, Wideband characterisation of the complex wave number and characteristic impedance of sound absorbers, J. Acoust. Soc. Am., 128, 2868, 10.1121/1.3488307
Mbailassem, 2016
Gourdon, 2010, On the use of porous inclusions to improve the acoustical response of porous materials: analytical model and experimental verification, Appl. Acoust., 71, 283, 10.1016/j.apacoust.2009.11.004
Johnson, 1987, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 379, 10.1017/S0022112087000727
Champoux, 1991, Dynamic tortuosity and bulk modulus in air-sturated porous media, J. Appl. Phys., 70, 1975, 10.1063/1.349482
Bies, 2003
Jaouen, 2017
Panneton, 2006, Acoustical determination of the parameters governing viscous dissipation in porous media, J. Acoust. Soc. Am., 119, 2027, 10.1121/1.2169923
Lagarrigue, 2012
Groby, 2011, Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions, J. Acoust. Soc. Am., 130, 3771, 10.1121/1.3652865
Bécot, 2008, Applications of the dual porosity theory to irregularly shaped porous materials, Acta Acustica united Acustica, 94, 715, 10.3813/AAA.918088
Bonfiglio, 2013, Inversion problems for determining physical parameters of porous materials: overview and comparison between different methods, Acta Acustica united Acustica, 99, 341, 10.3813/AAA.918616
Pompoli, 2017, How reproducible is the acoustical characterization of porous media?, J. Acoust. Soc. Am., 141, 945, 10.1121/1.4976087
Attenborough, 2011, Outdoor ground impedance models, J. Acoust. Soc. Am., 129, 2806, 10.1121/1.3569740
Pierce, 1989
