To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery
Tài liệu tham khảo
Byrne, 2008, Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Deliv. Rev., 60, 1615, 10.1016/j.addr.2008.08.005
Park, 2008, Polymeric nanomedecine for cancer therapy, Prog. Polym. Sci., 33, 113, 10.1016/j.progpolymsci.2007.09.003
Moghimi, 2005, Nanomedicine: current status and future prospects, FASEB J., 19, 311, 10.1096/fj.04-2747rev
Ehrlich, 1960, The Collected Papers of Paul Ehrlich, 3
Bae, 2009, Drug targeting and tumor heterogeneity, J. Control. Release, 133, 2, 10.1016/j.jconrel.2008.09.074
Hillaireau, 2009, Nanocarriers' entry into the cell: relevance to drug delivery, Cell. Mol. Life Sci., 66, 2873, 10.1007/s00018-009-0053-z
Malam, 2009, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer, Trends Pharmacol. Sci., 30, 592, 10.1016/j.tips.2009.08.004
Nanjwade, 2009, Dendrimers: emerging polymers for drug-delivery systems, Eur. J. Pharm. Sci., 38, 185, 10.1016/j.ejps.2009.07.008
Duncan, 2006, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, 6, 688, 10.1038/nrc1958
Owens, 2006, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm., 307, 93, 10.1016/j.ijpharm.2005.10.010
Bergers, 2003, Tumorigenesis and the angiogenic switch, Nat. Rev. Cancer, 3, 401, 10.1038/nrc1093
Carmeliet, 2000, Mechanisms of angiogenesis and arteriogenesis, Nat. Med., 6, 389, 10.1038/74651
Avraamides, 2008, Integrins in angiogenesis and lymphangiogenesis, Nat. Rev. Cancer, 8, 604, 10.1038/nrc2353
Stollman, 2009, New targeted probes for radioimaging of angiogenesis, Methods, 48, 188, 10.1016/j.ymeth.2009.03.006
Naumov, 2006, Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch, Cell Cycle, 5, 1779, 10.4161/cc.5.16.3018
Roerdink, 1984, Interaction of liposomes with hepatocytes and Kupffer cells in vivo and in vitro, Biochem. Soc. Trans., 12, 335, 10.1042/bst0120335
Palmer, 1984, The mechanism of liposome accumulation in infarction, Biochim. Biophys. Acta, 797, 363, 10.1016/0304-4165(84)90258-7
Jain, 1989, Delivery of novel therapeutic agents in tumors: physiological barriers and strategies, J. Natl Cancer Inst., 81, 570, 10.1093/jnci/81.8.570
Torchilin, 2000, Drug targeting, Eur. J. Pharm. Sci., 11, S81, 10.1016/S0928-0987(00)00166-4
Matsumura, 1986, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res., 46, 6387
Maeda, 2001, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, J. Control. Release, 74, 47, 10.1016/S0168-3659(01)00309-1
Maeda, 2009, Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect, Eur. J. Pharm. Biopharm., 71, 409, 10.1016/j.ejpb.2008.11.010
Jain, 1987, Transport of molecules in the tumor interstitium: a review, Cancer Res., 47, 3039
Heldin, 2004, High interstitial fluid pressure — an obstacle in cancer therapy, Nat. Rev. Cancer, 4, 806, 10.1038/nrc1456
Bouzin, 2007, Targeting tumor stroma and exploiting mature tumor vasculature to improve anti-cancer drug delivery, Drug Resist. Updat., 10, 109, 10.1016/j.drup.2007.03.001
van Sluis, 1999, In vivo imaging of extracellular pH using 1H MRSI, Magn. Reson. Med., 41, 743, 10.1002/(SICI)1522-2594(199904)41:4<743::AID-MRM13>3.0.CO;2-Z
Cardone, 2005, The role of disturbed pH dynamics and the Na+/H+exchanger in metastasis, Nat. Rev. Cancer, 5, 786, 10.1038/nrc1713
Fang, 2008, Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression, Semin. Cancer Biol., 18, 330, 10.1016/j.semcancer.2008.03.011
Feron, 2009, Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells, Radiother. Oncol., 92, 329, 10.1016/j.radonc.2009.06.025
Brahimi-Horn, 2007, Oxygen, a source of life and stress, FEBS Lett., 581, 3582, 10.1016/j.febslet.2007.06.018
Simon, 1999, Role of organelle pH in tumor cell biology and drug resistance, Drug Discov. Today, 4, 32, 10.1016/S1359-6446(98)01276-8
Haley, 2008, Nanoparticles for drug delivery in cancer treatment, Urol. Oncol., 26, 57, 10.1016/j.urolonc.2007.03.015
Unezaki, 1996, Direct measurement of extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence, Int. J. Pharm., 144, 11, 10.1016/S0378-5173(96)04674-1
Iyer, 2006, Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discov. Today, 11, 812, 10.1016/j.drudis.2006.07.005
Gullotti, 2009, Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery, Mol. Pharm., 6, 1041, 10.1021/mp900090z
Pirollo, 2008, Does a targeting ligand influence nanoparticle tumor localization or uptake?, Trends Biotechnol., 26, 552, 10.1016/j.tibtech.2008.06.007
Adams, 2001, High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules, Cancer Res., 61, 4750
Gosk, 2008, VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo, Biochim. Biophys. Acta, 1778, 854, 10.1016/j.bbamem.2007.12.021
Allen, 2002, Ligand-targeted therapeutics in anticancer therapy, Nat. Rev. Cancer, 2, 750, 10.1038/nrc903
Wiseman, 2001, Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma, Crit. Rev. Oncol. Hematol., 39, 181, 10.1016/S1040-8428(01)00107-X
Duvic, 2002, Quality-of-life improvements in cutaneous T-cell lymphoma patients treated with denileukin diftitox (ONTAK), Clin. Lymphoma, 2, 222, 10.3816/CLM.2002.n.003
Jurcic, 2001, Antibody therapy for residual disease in acute myelogenous leukemia, Crit. Rev. Oncol. Hematol., 38, 37, 10.1016/S1040-8428(00)00132-3
Kirpotin, 2006, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models, Cancer Res., 66, 6732, 10.1158/0008-5472.CAN-05-4199
Cho, 2008, Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res., 14, 1310, 10.1158/1078-0432.CCR-07-1441
Pastorino, 2006, Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy, Cancer Res., 66, 10073, 10.1158/0008-5472.CAN-06-2117
Daniels, 2006, The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells, Clin. Immunol., 121, 159, 10.1016/j.clim.2006.06.006
Low, 2009, Folate-targeted therapeutic and imaging agents for cancer, Curr. Opin. Chem. Biol., 13, 256, 10.1016/j.cbpa.2009.03.022
Minko, 2004, Drug targeting to the colon with lectins and neoglycoconjugates, Adv. Drug Deliv. Rev., 56, 491, 10.1016/j.addr.2003.10.017
Acharya, 2009, Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy, Biomaterials, 30, 5737, 10.1016/j.biomaterials.2009.07.008
Scaltriti, 2006, The epidermal growth factor receptor pathway: a model for targeted therapy, Clin. Cancer Res., 12, 5268, 10.1158/1078-0432.CCR-05-1554
Lurje, 2009, EGFR signaling and drug discovery, Oncology, 77, 400, 10.1159/000279388
Folkman, 1971, Transplacental carcinogenesis by stilbestrol, N Engl J. Med., 285, 404, 10.1056/NEJM197108122850711
Lammers, 2008, Tumour-targeted nanomedicines: principles and practice, Br. J. Cancer, 99, 392, 10.1038/sj.bjc.6604483
Shadidi, 2003, Selective targeting of cancer cells using synthetic peptides, Drug Resist. Updat., 6, 363, 10.1016/j.drup.2003.11.002
Carmeliet, 2005, VEGF as a key mediator of angiogenesis in cancer, Oncology, 69, 4, 10.1159/000088478
Desgrosellier, 2010, Integrins in cancer: biological implications and therapeutic opportunities, Nat. Rev. Cancer, 10, 9, 10.1038/nrc2748
Dienst, 2005, Specific occlusion of murine and human tumor vasculature by VCAM-1-targeted recombinant fusion proteins, J. Natl Cancer Inst., 97, 733, 10.1093/jnci/dji130
Genis, 2006, MT1-MMP: universal or particular player in angiogenesis?, Cancer Metastasis Rev., 25, 77, 10.1007/s10555-006-7891-z
Saiki, 1993, Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation, Int. J. Cancer, 54, 137, 10.1002/ijc.2910540122
Pasqualini, 2000, Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis, Cancer Res., 60, 722
Schlingemann, 1996, Aminopeptidase a is a constituent of activated pericytes in angiogenesis, J. Pathol., 179, 436, 10.1002/(SICI)1096-9896(199608)179:4<436::AID-PATH611>3.0.CO;2-A
Hofheinz, 2005, Liposomal encapsulated anti-cancer drugs, Anticancer Drugs, 16, 691, 10.1097/01.cad.0000167902.53039.5a
Gradishar, 2005, Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer, J. Clin. Oncol., 23, 7794, 10.1200/JCO.2005.04.937
Desai, 2006, Increased antitumor activity, intratumor paclitaxel concentrations and endothelial cell transport of Cremophor-free, albumin-bound paclitaxel, ABI-007, compared with Cremophor-based paclitaxel, Clin. Cancer Res., 12, 1317, 10.1158/1078-0432.CCR-05-1634
Miele, 2009, Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer, Int. J. Nanomedicine, 4, 99
Seymour, 2002, Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin, J. Clin. Oncol., 20, 1668, 10.1200/JCO.20.6.1668
Matsumura, 2004, Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer, Ann. Oncol., 15, 517, 10.1093/annonc/mdh092
Suzuki, 2008, Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome, Int. J. Pharm., 346, 143, 10.1016/j.ijpharm.2007.06.010
Mulgrew, 2006, Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody, Abegrin, Mol. Cancer Ther., 5, 3122, 10.1158/1535-7163.MCT-06-0356
Murphy, 2008, Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis, Proc. Natl Acad. Sci. USA, 105, 9343, 10.1073/pnas.0803728105
Danhier, 2009, Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel, J. Control. Release, 140, 166, 10.1016/j.jconrel.2009.08.011
Krieger, 2010, Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro, Int. J. Pharm., 389, 10, 10.1016/j.ijpharm.2009.12.061
Ying, 2010, Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals, J. Control. Release, 141, 183, 10.1016/j.jconrel.2009.09.020
Gabizon, 2003, In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice, Clin. Cancer Res., 9, 6551
Esmaeili, 2008, Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate, J. Drug Target., 16, 415, 10.1080/10611860802088630
Yoo, 2004, Folate receptor targeted biodegradable polymeric doxorubicin micelles, J. Control. Release, 96, 273, 10.1016/j.jconrel.2004.02.003
Wang, 2008, Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery, J. Control. Release, 128, 32, 10.1016/j.jconrel.2008.01.021
Eliaz, 2004, Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes, Cancer Res., 64, 711, 10.1158/0008-5472.CAN-03-0654
Park, 2002, Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery, Clin. Cancer Res., 8, 1172
Mamot, 2005, Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo, Cancer Res., 65, 11631, 10.1158/0008-5472.CAN-05-1093
Li, 2004, A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles, Int. J. Radiat. Oncol. Biol. Phys., 58, 1215, 10.1016/j.ijrobp.2003.10.057
Cheng, 2008, Functionalized thermoresponsive micelles self-assembled from biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA for tumor cell target, Bioconjug. Chem., 19, 1194, 10.1021/bc8000062
Xiong, 2005, Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo, J. Pharm. Sci., 94, 1782, 10.1002/jps.20397
Hu, 2008, Arg–Gly–Asp (RGD) peptide conjugated poly(lactic acid)-poly(ethylene oxide) micelle for targeted drug delivery, J. Biomed. Mater. Res. A, 85, 797, 10.1002/jbm.a.31615
Kondo, 2004, Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase, Int. J. Cancer, 108, 301, 10.1002/ijc.11526
Hatakeyama, 2007, Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes, Int. J. Pharm., 342, 194, 10.1016/j.ijpharm.2007.04.037
Pastorino, 2003, Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy, Cancer Res., 63, 7400
Kim, 2008, Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH, Small, 4, 2043, 10.1002/smll.200701275
Lee, 2003, Polymeric micelle for tumor pH and folate-mediated targeting, J. Control. Release, 91, 103, 10.1016/S0168-3659(03)00239-6
Berry, 2008, Intracellular delivery of nanoparticles via the HIV-1 tat peptide, Nanomed. (Lond.), 3, 357, 10.2217/17435889.3.3.357
Sethuraman, 2007, TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors, J. Control. Release, 118, 216, 10.1016/j.jconrel.2006.12.008
Schellmann, 2010, Targeted enzyme prodrug therapies, Mini Rev. Med. Chem., 10, 887, 10.2174/138955710792007196
Roy, 2010, Future perspectives and recent advances in stimuli-responsive materials, Prog. Polym. Sci., 35, 278, 10.1016/j.progpolymsci.2009.10.008
Ghosh, 2009, Redox, ionic strength, and pH sensitive supramolecular polymer assemblies, J. Polym. Sci. Part A: Polym. Chem., 47, 1052, 10.1002/pola.23204
Kono, 2002, Effect of poly(ethylene glycol) grafts on temperature-sensitivity of thermosensitive polymer-modified liposomes, J. Control. Release, 80, 321, 10.1016/S0168-3659(02)00018-4
Veiseh, 2010, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug Deliv. Rev., 63, 284, 10.1016/j.addr.2009.11.002
M. Mahoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy Adv. Drug Deliv. Rev. (in press), doi:10.1016/j.addr.2010.05.006.
McBain, 2008, Magnetic nanoparticles for gene and drug delivery, Int. J. Nanomedicine, 3, 169
Wilson, 2004, Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/ conventional angiography suite—initial experience with four patients, Radiology, 230, 287, 10.1148/radiol.2301021493
Hilger, 2002, Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study, Invest Radiol., 37, 580, 10.1097/00004424-200210000-00008
Goodwin, 2005, Synthetic micelle sensitive to IR light via a two-photon process, J. Am. Chem. Soc., 127, 9952, 10.1021/ja0523035
Jiang, 2006, Toward photocontrolled release using light-dissociable block copolymer micelles, Macromolecules, 39, 4633, 10.1021/ma060142z
Schroeder, 2009, Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes, Chem. Phys. Lipids, 162, 1, 10.1016/j.chemphyslip.2009.08.003
Torchilin, 2009, Multifunctional and stimuli-sensitive pharmaceutical nanocarriers, Eur. J. Pharm. Biopharm., 71, 431, 10.1016/j.ejpb.2008.09.026
Negussie, 2010, Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome, J. Control. Release, 143, 265, 10.1016/j.jconrel.2009.12.031
Chen, 2006, Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer, Cancer Lett., 231, 169, 10.1016/j.canlet.2005.01.024
Sawant, 2006, “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers, Bioconjug. Chem., 17, 943, 10.1021/bc060080h
V. Torchilin, Tumor delivery of macromolecular drugs based on the EPR effect Adv. Drug Deliv. Rev. (in press), doi:10.1016/j.addr.2010.03.011.
J. Fang, H. Nakamura, H. Maeda, The EPR effect: unique feature of blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect Adv. Drug Deliv. Rev. (in press), doi:10.1016/j.addr.2010.04.009.
Wang, 2010, Targeting nanoparticles to cancer, Pharm. Res., 62, 90, 10.1016/j.phrs.2010.03.005
Ruenraroengsak, 2010, Nanosystem drug targeting: facing up to complex realities, J. Control. Rel., 141, 265, 10.1016/j.jconrel.2009.10.032