Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues

Miranda Van Eck1, I. Sophie T. Bos1, Wolfgang E. Kaminski1, Evelyn Orsó1, Gregor Rothe1, Jaap Twisk1, Alfred Böttcher1, Edwin S. van Amersfoort1, Trudy A. Christiansen-Weber1, Wai‐Ping Fung‐Leung1, Theo J.C. van Berkel1, Gerd Schmitz1
1Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Sylvius Laboratories, Leiden University, P.O. Box 9503, 2300 RA Leiden, The Netherlands; Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, D-93042 Regensburg, Germany; and R. W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121

Tóm tắt

The ATP-binding cassette transporter 1 (ABCA1) has recently been identified as a key regulator of high-density lipoprotein (HDL) metabolism, which is defective in familial HDL-deficiency syndromes such as Tangier disease. ABCA1 functions as a facilitator of cellular cholesterol and phospholipid efflux, and its expression is induced during cholesterol uptake in macrophages. To assess the role of macrophage ABCA1 in atherosclerosis, we generated low-density lipoprotein (LDL) receptor knockout (LDLr −/− ) mice that are selectively deficient in leukocyte ABCA1 (ABCA1 −/− ) by using bone marrow transfer (ABCA1 −/− → LDLr −/− ). Here we demonstrate that ABCA1 −/− → LDLr −/− chimeras develop significantly larger and more advanced atherosclerotic lesions compared with chimeric LDLr −/− mice with functional ABCA1 in hematopoietic cells. Targeted disruption of leukocyte ABCA1 function did not affect plasma HDL cholesterol levels. The amount of macrophages in liver and spleen and peripheral blood leukocyte counts is increased in the ABCA1 −/− → LDLr −/− chimeras. Our results provide evidence that leukocyte ABCA1 plays a critical role in the protection against atherosclerosis, and we identify ABCA1 as a leukocyte factor that controls the recruitment of inflammatory cells.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.cb.08.110192.000435

10.1016/S0005-2736(99)00170-4

10.1016/S1388-1981(00)00053-6

10.1097/00041433-200010000-00007

10.1097/00041433-200006000-00005

10.1038/11914

10.1038/11905

10.1038/11921

J A Glomset Adv Intern Med 25, 91–116 (1980).

10.1172/JCI104907

G Assman, G Schmitz, H B Brewer The Metabolic Basis of Inherited Disease, eds C R Scriver, A L Beaudet, W S Sly, D Valle (McGraw–Hill, New York), pp. 1267–1282 (1989).

10.1006/bbrc.1999.0406

10.1038/72869

10.1161/01.ATV.21.1.13

10.1074/jbc.M006738200

10.1038/83348

10.1016/S0002-9440(10)64614-7

10.1172/JCI116663

10.1172/JCI117179

10.1016/S0022-2275(20)42785-3

10.1161/01.ATV.17.11.3117

10.1016/S0021-9258(19)52451-6

10.1042/bj1560539

10.1016/0005-2760(90)90213-H

10.1161/01.ATV.16.8.926

M Van Eck, R Zimmermann, P H E Groot, R Zechner, Th J C Van Berkel Arterioscler Thromb Vasc Biol 20, E53–E62 (2000).

10.1111/j.1365-3083.1987.tb02301.x

10.1016/0022-1759(94)90005-1

10.1161/01.ATV.14.5.840

10.1161/01.ATV.15.9.1512

10.1161/01.ATV.20.5.1177

10.1073/pnas.97.8.4245

10.1073/pnas.79.8.2485

10.1016/0005-2760(87)90305-5

10.1016/S0021-9258(17)45278-1

10.1016/0009-8981(91)90161-5

10.1074/jbc.271.25.14791

10.1074/jbc.273.41.26388

10.1016/S0065-3233(08)60641-5

10.1016/S0021-9150(99)00372-X

10.1016/0021-9150(94)90144-9

10.1159/000028100

10.1056/NEJM199901143400207

10.1073/pnas.012587699

10.1084/jem.161.3.475

10.1016/0092-8674(82)90376-2

10.1161/01.ATV.18.4.631

10.1172/JCI119891

10.1182/blood.V77.4.750.750

10.1172/JCI8119

10.1002/j.1460-2075.1996.tb00353.x

10.1038/35017029