Structural and functional specificities of PDGF‐C and PDGF‐D, the novel members of the platelet‐derived growth factors family

FEBS Journal - Tập 272 Số 22 - Trang 5723-5741 - 2005
Laila J. Reigstad1,2, Jan Erik Varhaug2,3, Johan R. Lillehaug1
1Department of Molecular Biology, University of Bergen, Norway
2Department of Surgical Sciences, University of Bergen, Norway
3Haukeland University Hospital, Bergen, Norway

Tóm tắt

The platelet‐derived growth factor (PDGF) family was for more than 25 years assumed to consist of only PDGF‐A and ‐B. The discovery of the novel family members PDGF‐C and PDGF‐D triggered a search for novel activities and complementary fine tuning between the members of this family of growth factors. Since the expansion of the PDGF family, more than 60 publications on the novel PDGF‐C and PDGF‐D have been presented, highlighting similarities and differences to the classical PDGFs. In this paper we review the published data on the PDGF family covering structural (gene and protein) similarities and differences among all four family members, with special focus on PDGF‐C and PDGF‐D expression and functions. Little information on the protein structures of PDGF‐C and ‐D is currently available, but the PDGF‐C protein may be structurally more similar to VEGF‐A than to PDGF‐B. PDGF‐C contributes to normal development of the heart, ear, central nervous system (CNS), and kidney, while PDGF‐D is active in the development of the kidney, eye and brain. In adults, PDGF‐C is active in the kidney and the central nervous system. PDGF‐D also plays a role in the lung and in periodontal mineralization. PDGF‐C is expressed in Ewing family sarcoma and PDGF‐D is linked to lung, prostate and ovarian cancers. Both PDGF‐C and ‐D play a role in progressive renal disease, glioblastoma/medulloblastoma and fibrosis in several organs.

Từ khóa


Tài liệu tham khảo

10.1016/0092-8674(93)90127-C

10.1146/annurev.bb.24.060195.001413

10.1210/mend.15.5.0639

10.1038/369455a0

10.2174/0929866053005863

10.2174/1389203043379512

10.1016/S0014-5793(00)01640-9

10.1038/35010579

10.1016/S0925-4773(00)00425-1

10.1038/35074593

10.1006/bbrc.2000.4187

10.1038/35074588

10.1242/jcs.96.2.193

10.1006/abbi.2001.2707

10.1016/S0167-4781(00)00066-X

10.1006/jmbi.1993.1305

10.1126/science.6291150

10.1038/320695a0

10.1161/01.CIR.103.18.2242

10.1016/j.cytogfr.2004.03.007

10.1016/S1359-6101(02)00090-4

10.1074/jbc.270.46.27679

10.1126/science.271.5254.1427

10.1074/jbc.M406063200

10.1016/S1357-2725(01)00124-8

10.1016/S0006-291X(03)01346-9

10.1016/S0925-4773(01)00625-6

10.1038/328621a0

10.1046/j.1523-1755.2002.00662.x

10.1681/ASN.V134910

10.1073/pnas.84.8.2317

10.1073/pnas.83.11.3728

10.1006/jmbi.1997.1423

10.1006/jmbi.1997.1424

10.1093/emboj/cdg236

10.1038/nsb1097-783

10.1074/jbc.274.29.20540

10.1016/S0002-9440(10)63694-2

10.1074/jbc.M413570200

10.1007/978-1-4615-0119-0_5

10.1074/jbc.M101056200

10.1038/sj.emboj.7600397

10.1074/jbc.M503388200

10.1128/MCB.25.14.6279-6288.2005

Siegfried G, 2003, The proteolytic processing of pro‐platelet‐derived growth factor‐A at RRKR (86) by members of the proprotein convertase family is functionally correlated to platelet‐derived growth factor‐A‐induced functions and tumorigenicity, Cancer Res, 63, 1458

10.1083/jcb.118.3.509

10.1038/354411a0

10.1126/science.1631557

10.1002/j.1460-2075.1992.tb05485.x

10.1016/0969-2126(93)90029-G

10.1016/S0969-2126(97)00284-0

10.1073/pnas.94.14.7192

10.1016/S0092-8674(00)80456-0

10.1074/jbc.M008055200

10.1006/abbi.1994.1189

10.1021/bi00060a039

10.1074/jbc.M301728200

10.1021/bi960118l

10.1074/jbc.271.43.26884

10.1091/mbc.2.7.503

10.1016/S0167-4838(96)00136-7

10.1152/physrev.1999.79.4.1283

10.1016/S0021-9258(19)52482-6

10.1016/S0304-419X(98)00015-8

10.1126/science.2836952

10.1158/0008-5472.CAN-03-3047

10.1093/eurheartj/ehi168

10.1016/0305-0491(92)90303-9

10.1073/pnas.89.4.1281

10.1016/S0021-9258(18)42352-6

10.1016/S0092-8674(00)81270-2

10.1101/gad.8.16.1875

10.1038/ng1415

10.1016/S0925-4773(01)00560-3

10.1358/dot.2003.39.10.799472

10.1161/01.ATV.0000120785.82268.8b

10.1172/JCI19189

10.1002/jcp.20154

10.1096/fj.02-0319com

10.1097/01.ASN.0000089828.73014.C8

10.1097/01.ASN.0000062964.75006.A8

Lokker NA, 2002, Platelet‐derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF‐C and PDGF‐D ligands may play a role in the development of brain tumors, Cancer Res, 62, 3729

10.1080/00016480410016577

10.1152/ajplung.00083.2003

10.1097/01.ASN.0000083393.00959.02

10.1111/j.1600-0765.2004.00750.x

10.1182/blood-2004-04-1485

10.1038/sj.onc.1206223

LaRochelle WJ, 2002, Platelet‐derived growth factor D: tumorigenicity in mice and dysregulated expression in human cancer, Cancer Res, 62, 2468

10.1016/j.bbrc.2005.02.062

10.1038/modpathol.3880109

10.1073/pnas.89.9.3942

10.1002/ijc.2910600206

10.1016/S0006-291X(02)00917-8

10.1002/jcp.1126

10.1126/science.6304883

10.1038/sj.onc.1202606

10.1038/sj.onc.1205486

10.1038/sj.onc.1204133

10.1016/S0014-4827(03)00371-9

10.1038/sj.onc.1206330

10.1101/gad.891601

Smits A, 1996, Coexpression of platelet‐derived growth factor alpha and beta receptors on medulloblastomas and other primitive neuroectodermal tumors is consistent with an immature stem cell and neuronal derivation, Laboratory Invest, 74, 188

10.1227/00006123-199102000-00007

Ranieri E, 2001, The role of alpha‐smooth muscle actin and platelet‐derived growth factor‐beta receptor in the progression of renal damage in human IgA nephropathy, J Nephrol, 14, 253

10.1073/pnas.0409722102

10.1289/ehp.00108s4751

10.1038/sj.bjc.6602141

10.1093/eurheartj/ehi201

10.1097/01.ASN.0000108522.79652.63

10.1158/0008-5472.CAN-04-4313

10.1016/j.cyto.2005.06.005