Metabolic signatures of T-cells and macrophages in rheumatoid arthritis

Current Opinion in Immunology - Tập 46 - Trang 112-120 - 2017
Cornelia M Weyand1, Markus Zeisbrich1, Jörg J Goronzy1
1Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA , United States

Tài liệu tham khảo

Mankia, 2016, Preclinical rheumatoid arthritis: progress toward prevention, Arthritis Rheumatol., 68, 779, 10.1002/art.39603 Dekkers, 2017, Possibilities for preventive treatment in rheumatoid arthritis? Lessons from experimental animal models of arthritis: a systematic literature review and meta-analysis, Ann. Rheum. Dis., 76, 458, 10.1136/annrheumdis-2016-209830 Takemura, 2001, Lymphoid neogenesis in rheumatoid synovitis, J. Immunol., 167, 1072, 10.4049/jimmunol.167.2.1072 Shaw, 2016, Mediators of inflammation and bone remodeling in rheumatic disease, Semin. Cell Dev. Biol., 49, 2, 10.1016/j.semcdb.2015.10.013 Croft, 2016, Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage, Arthritis. Res. Ther., 18, 270, 10.1186/s13075-016-1156-1 Cantagrel, 2016, New autoantibodies associated with rheumatoid arthritis recognize posttranslationally modified self-proteins, Joint Bone Spine, 83, 11, 10.1016/j.jbspin.2015.10.003 van Beers-Tas, 2015, How does established rheumatoid arthritis develop, and are there possibilities for prevention, Best Pract. Res. Clin. Rheumatol., 29, 527, 10.1016/j.berh.2015.09.001 Catrina, 2016, Mechanisms involved in triggering rheumatoid arthritis, Immunol. Rev., 269, 162, 10.1111/imr.12379 Bernelot Moens, 2016, Unexpected arterial wall and cellular inflammation in patients with rheumatoid arthritis in remission using biological therapy: a cross-sectional study, Arthritis. Res. Ther., 18, 115, 10.1186/s13075-016-1008-z Zhu, 2014, Evaluation of synovial angiogenesis in patients with rheumatoid arthritis using (6)(8)Ga-PRGD2 PET/CT: a prospective proof-of-concept cohort study, Ann. Rheum. Dis., 73, 1269, 10.1136/annrheumdis-2013-204820 Tsokos, 2016, Metabolic control of arthritis: switch pathways to treat, Sci. Transl. Med., 8, 10.1126/scitranslmed.aaf4953 Li, 2016, Metabolic factors that contribute to lupus pathogenesis, Crit. Rev. Immunol., 36, 75, 10.1615/CritRevImmunol.2016017164 Yang, 2015, T-cell metabolism in autoimmune disease, Arthritis. Res. Ther., 17, 29, 10.1186/s13075-015-0542-4 Weyand, 2017, Immunometabolism in early and late stages of rheumatoid arthritis, Nat. Rev. Rheumatol., 13, 291, 10.1038/nrrheum.2017.49 Goronzy, 2017, Successful and maladaptive T cell aging, Immunity, 46, 364, 10.1016/j.immuni.2017.03.010 Shirai, 2016, The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease, J. Exp. Med., 213, 337, 10.1084/jem.20150900 Johnson, 2016, Nutrients and the microenvironment to feed a T cell army, Semin. Immunol., 28, 505, 10.1016/j.smim.2016.09.003 Donnelly, 2015, Glucose, glycolysis and lymphocyte responses, Mol. Immunol., 68, 513, 10.1016/j.molimm.2015.07.034 Dimeloe, 2017, T-cell metabolism governing activation, proliferation and differentiation; a modular view, Immunology, 150, 35, 10.1111/imm.12655 Frauwirth, 2004, Regulation of T lymphocyte metabolism, J. Immunol., 172, 4661, 10.4049/jimmunol.172.8.4661 Frauwirth, 2002, The CD28 signaling pathway regulates glucose metabolism, Immunity, 16, 769, 10.1016/S1074-7613(02)00323-0 Waickman, 2012, mTOR, metabolism, and the regulation of T-cell differentiation and function, Immunol. Rev., 249, 43, 10.1111/j.1600-065X.2012.01152.x Yang, 2013, Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells, J. Exp. Med., 210, 2119, 10.1084/jem.20130252 Yang, 2016, Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis, Sci. Transl. Med., 8, 331ra338, 10.1126/scitranslmed.aad7151 Yang, 2014, The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy, Autophagy, 10, 382, 10.4161/auto.27345 Tripmacher, 2008, Human CD4(+) T cells maintain specific functions even under conditions of extremely restricted ATP production, Eur. J. Immunol., 38, 1631, 10.1002/eji.200738047 Putker, 2014, Intermolecular disulfide-dependent redox signalling, Biochem. Soc. Trans., 42, 971, 10.1042/BST20140097 O'Neill, 2014, Circadian redox and metabolic oscillations in mammalian systems, Antioxid. Redox Signal., 20, 2966, 10.1089/ars.2013.5582 Ditch, 2012, The ATM protein kinase and cellular redox signaling: beyond the DNA damage response, Trends Biochem. Sci., 37, 15, 10.1016/j.tibs.2011.10.002 Lavin, 2015, ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor, Biomolecules, 5, 2877, 10.3390/biom5042877 Shao, 2009, Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis, J. Exp. Med., 206, 1435, 10.1084/jem.20082251 Veras, 2015, Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway, Sci. Rep., 5, 15171, 10.1038/srep15171 Howie, 2014, Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment, Front. Immunol., 5, 409, 10.3389/fimmu.2014.00409 Raker, 2016, The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases, Front. Immunol., 7, 123, 10.3389/fimmu.2016.00123 Bono, 2015, CD73 and CD39 ectonucleotidases in T cell differentiation: beyond immunosuppression, FEBS Lett., 589, 3454, 10.1016/j.febslet.2015.07.027 Fang, 2016, Expression of CD39 on activated T cells impairs their survival in older individuals, Cell Rep., 14, 1218, 10.1016/j.celrep.2016.01.002 Goetzl, 1971, A physiological approach to the assessment of disease activity in rheumatoid arthritis, J. Clin. Invest., 50, 1167, 10.1172/JCI106594 Treuhaft, 1971, Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases, Arthritis Rheumatol., 14, 475, 10.1002/art.1780140407 Semenza, 2001, ‘The metabolism of tumours’: 70 years later, Novartis Found. Symp., 240, 251, 10.1002/0470868716.ch17 DeBerardinis, 2008, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell Metab., 7, 11, 10.1016/j.cmet.2007.10.002 Garcia-Carbonell, 2016, Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes, Arthritis Rheumatol., 68, 1614, 10.1002/art.39608 Haas, 2016, Intermediates of metabolism: from bystanders to signalling molecules, Trends Biochem. Sci., 41, 460, 10.1016/j.tibs.2016.02.003 Osmakov, 2014, Acid-sensing ion channels and their modulators, Biochemistry (Mosc), 79, 1528, 10.1134/S0006297914130069 Zhou, 2016, Novel insights into acid-sensing ion channels: implications for degenerative diseases, Aging Dis., 7, 491, 10.14336/AD.2015.1213 Haas, 2015, Lactate regulates metabolic and pro-inflammatory circuits in control of T-cell migration and effector functions, PLoS Biol., 13, e1002202, 10.1371/journal.pbio.1002202 Weyand, 2014, T-cell aging in rheumatoid arthritis, Curr. Opin. Rheumatol., 26, 93, 10.1097/BOR.0000000000000011 Weyand, 2009, Rejuvenating the immune system in rheumatoid arthritis, Nat. Rev. Rheumatol., 5, 583, 10.1038/nrrheum.2009.180 Li, 2016, Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis, Immunity, 45, 903, 10.1016/j.immuni.2016.09.013 Williams, 2010, Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks, DNA Repair (Amst), 9, 1299, 10.1016/j.dnarep.2010.10.001 Schonland, 2003, Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages, Proc. Natl. Acad. Sci. U. S. A., 100, 13471, 10.1073/pnas.2233561100 Winchester, 2016, Association of elevations of specific T cell and monocyte subpopulations in rheumatoid arthritis with subclinical coronary artery atherosclerosis, Arthritis Rheumatol., 68, 92, 10.1002/art.39419 Onuora, 2017, Rheumatoid arthritis: anti-TNF agents go head-to-head, Nat. Rev. Rheumatol., 13, 2 Houri Levi, 2016, Coexistence of ischemic heart disease and rheumatoid arthritis patients—a case control study, Autoimmun. Rev., 15, 393, 10.1016/j.autrev.2016.01.006 Shirai, 2015, Macrophages in vascular inflammation—from atherosclerosis to vasculitis, Autoimmunity, 48, 139, 10.3109/08916934.2015.1027815 Bradham, 2014, Insulin resistance is associated with increased concentrations of NT-proBNP in rheumatoid arthritis: IL-6 as a potential mediator, Inflammation, 37, 801, 10.1007/s10753-013-9799-4 Rho, 2009, Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis, Arthritis Rheumatol., 61, 1580, 10.1002/art.25009 Fujii, 2015, Monocarboxylate transporter 4, associated with the acidification of synovial fluid, is a novel therapeutic target for inflammatory arthritis, Arthritis Rheumatol., 67, 2888, 10.1002/art.39270 Thomas, 1955, In vitro studies of rheumatoid synovium; preliminary metabolic comparison between synovial membrane and villi, Br. J. Exp. Pathol., 36, 195 Pucino, 2017, Lactate at the crossroads of metabolism, inflammation, and autoimmunity, Eur. J. Immunol., 47, 14, 10.1002/eji.201646477 Bonnet, 2015, AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis, Ann. Rheum. Dis., 74, 242, 10.1136/annrheumdis-2013-203670 Littlewood-Evans, 2016, GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis, J. Exp. Med., 213, 1655, 10.1084/jem.20160061 Kim, 2014, Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis, PLoS One, 9, e97501, 10.1371/journal.pone.0097501