S1PR2 antagonist ameliorate high glucose-induced fission and dysfunction of mitochondria in HRGECs via regulating ROCK1

BMC Nephrology - Tập 20 - Trang 1-8 - 2019
Wei Chen1,2,3, Hong Xiang1, Ruifang Chen1, Jie Yang2, Xiaoping Yang4, Jianda Zhou5, Hengdao Liu2, Shaoli Zhao2, Jie Xiao2, Pan Chen2, Alex F. Chen1,6, Shuhua Chen1,7, Hongwei Lu1,2
1Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
2Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
3Department of Nursing, School of Medicine, Hunan Normal University, Changsha, People’s Republic of China
4Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, People’s Republic of China
5Department of Burn, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
6Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, USA
7Department of Biochemistry, School of Life Sciences of Central South University, Changsha, People’s Republic of China

Tóm tắt

Sphingosine-1-phosphate receptor 2 (S1PR2) is a G-protein-coupled receptor that regulates sphingosine-1-phosphate-triggered cellular response. However, the role of S1PR2 in diabetes-induced glomerular endothelial cell dysfunction remains unclear. This study aims to investigate the effect of S1PR2 blockade on the morphology and function of mitochondria in human renal glomerular endothelial cells (HRGECs). HRGECs were pretreated with a S1PR2 antagonist (JTE-013) or a Rho-associated coiled coil-containing protein kinase 1 (ROCK1) inhibitor (Y27632) for 30 min and then cultured with normal glucose (5.5 mM) or high glucose (30 mM) for 72 h. The protein expression levels of RhoA, ROCK1, and Dynmin-related protein-1(Drp1) were evaluated by immunoblotting; mitochondrial morphology was observed by electron microscopy; intracellular levels of ATP, ROS, and Ca2+ were measured by ATPlite, DCF-DA, and Rhod-2 AM assays, respectively. Additionally, the permeability, apoptosis, and migration of cells were determined to evaluate the effects of S1PR2 and ROCK1 inhibition on high glucose-induced endothelial dysfunction. High glucose induced mitochondrial fission and dysfunction, indicated by increased mitochondrial fragmentation, ROS generation, and calcium overload but decreased ATP production. High glucose also induced endothelial cell dysfunction, indicated by increased permeability and apoptosis but decreased migration. However, inhibition of either S1PR2 or ROCK1 almost completely blocked these high glucose-mediated cellular responses. Furthermore, inhibiting S1PR2 resulted in the deceased expression of RhoA, ROCK1, and Drp1 while inhibiting ROCK1 led to the downregulated expression of Drp1. S1PR2 antagonist modulates the morphology and function of mitochondria in HRGECs via the positive regulation of the RhoA/ROCK1/Drp1 signaling pathway, suggesting that the S1PR2/ROCK1 pathway may play a crucial role in high glucose milieu.

Tài liệu tham khảo

Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MB. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem. 2013;82:637–62. Waeber C. Sphingosine 1-phosphate (S1P) signaling and the vasculature. Lysophospholipid Receptors: Signaling and Biochemistry. 2013:313–47. Lorenz JN, Arend LJ, Robitz R, Paul RJ, MacLennan AJ. Vascular dysfunction in S1P<sub>2</sub> sphingosine 1-phosphate receptor knockout mice. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R440–R6. Liu H, Peng H, Chen S, Liu Y, Xiang H, Chen R, et al. S1PR2 antagonist protects endothelial cells against high glucose-induced mitochondrial apoptosis through the Akt/GSK-3beta signaling pathway. Biochem Biophys Res Commun. 2017;490(3):1119–24. Windh RT, Lee MJ, Hla T, An S, Barr AJ, Manning DR. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G (12) families of heterotrimeric G proteins. J Biol Chem. 1999;274(39):27351–8. Ye D, Lin F. S1pr2/Galpha13 signaling controls myocardial migration by regulating endoderm convergence. Development. 2013;140(4):789–99. Singleton PA, Dudek SM, Chiang ET, Garcia JG. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J. 2005;19(12):1646–56. Ishimaru N, Yamada A, Nitta T, Arakaki R, Lipp M, Takahama Y, et al. CCR7 with S1P1 signaling through AP-1 for migration of Foxp3+ regulatory T-cells controls autoimmune exocrinopathy. Am J Pathol. 2012;180(1):199–208. Zhao J, Garcia D, Gartung A, Lee MJ. Sphingosine-1-phosphate receptor subtype 2 signaling in endothelial senescence-associated functional impairments and inflammation. Curr Atheroscler Rep. 2015;17(5):504. Zhang G, Yang L, Kim GS, Ryan K, Lu S, O'Donnell RK, et al. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood. 2013;122(3):443–55. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol. 2007;27(6):1312–8. Haraldsson B, Nystrom J. The glomerular endothelium: new insights on function and structure. Curr Opin Nephrol Hypertens. 2012;21(3):258–63. Fogo AB, Kon V. The glomerulus--a view from the inside--the endothelial cell. Int J Biochem Cell Biol. 2010;42(9):1388–97. Kadlec AO, Beyer AM, Ait-Aissa K, Gutterman DD. Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species. Basic Res Cardiol. 2016;111(3):26. Daehn I, Qi H, Casalena G, Shi S, Yu L, Ebefors K, et al. Glomerular Endothelial Mitochondrial Dysfunction is Essential and Characteristic of Diabetic Kidney Disease Susceptibility. Diabetes. 2017;66(3):763–78. Cieslik M, Czapski GA, Strosznajder JB. The molecular mechanism of amyloid beta42 peptide toxicity: the role of sphingosine Kinase-1 and mitochondrial Sirtuins. PLoS One. 2015;10(9):e0137193. Bajwa A, Rosin DL, Chroscicki P, Lee S, Dondeti K, Ye H, et al. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol. 2015;26(4):908–25. Shen Z, Liu C, Liu P, Zhao J, Xu W. Sphingosine 1-phosphate (S1P) promotes mitochondrial biogenesis in Hep G2 cells by activating peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). Cell Stress Chaperones. 2014;19(4):541–8. Xiang SY, Ouyang K, Yung BS, Miyamoto S, Smrcka AV, Chen J, et al. PLCepsilon, PKD1, and SSH1L transduce RhoA signaling to protect mitochondria from oxidative stress in the heart. Sci Signal. 2013;6(306):ra108. Wu N, Shen H, Liu H, Wang Y, Bai Y, Han P. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo. Cardiovasc Diabetol. 2016;15(1):109. Yin Q, Xia Y, Wang G. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway. Biochem Biophys Res Commun. 2016;477(4):881–6. Shang J, Zhang Y, Jiang Y, Li Z, Duan Y, Wang L, et al. NOD2 promotes endothelial-to-mesenchymal transition of glomerular endothelial cells via MEK/ERK signaling pathway in diabetic nephropathy. Biochem Biophys Res Commun. 2017;484(2):435–41. Wang Q, Zhang M, Torres G, Wu S, Ouyang C, Xie Z, et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. Diabetes. 2017;66(1):193–205. Yuan Y, Shi M, Li L, Liu J, Chen B, Chen Y, et al. Mesenchymal stem cell-conditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/PGC-1alpha pathway. Clin Sci (Lond). 2016;130(23):2181–98. Chen W, Yang J, Chen S, Xiang H, Liu H, Lin D, et al. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction. Diab Vasc Dis Res. 2017;14(6):494–501. Liu H, Peng H, Chen S, Liu Y, Xiang H, Chen R, et al. S1PR2 antagonist protects endothelial cells against high glucose-induced mitochondrial apoptosis through the Akt/GSK-3β signaling pathway. Biochem Biophys Res Commun. 2017;490(3):1119–24. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. Flyvbjerg A. The role of the complement system in diabetic nephropathy. Nat Rev Nephrol. 2017;13(5):311–8. Siddiqi FS, Advani A. Endothelial-podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes. Diabetes. 2013;62(11):3647–55. Chen S, Yang J, Xiang H, Chen W, Zhong H, Yang G, et al. Role of sphingosine-1-phosphate receptor 1 and sphingosine-1-phosphate receptor 2 in hyperglycemia-induced endothelial cell dysfunction. Int J Mol Med. 2015;35(4):1103–8. Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1977;1(5):409–17. Manella G, Asher G. The Circadian Nature of Mitochondrial Biology. Front Endocrinol (Lausanne). 2016;7:162. Szewczyk A, Jarmuszkiewicz W, Koziel A, Sobieraj I, Nobik W, Lukasiak A, et al. Mitochondrial mechanisms of endothelial dysfunction. Pharmacol Rep. 2015;67(4):704–10. Hu C, Huang Y, Li L. Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. Int J Mol Sci. 2017;18(1):144. Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem Soc Trans. 2016;44(6):1725–35. Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012;15(2):186–200.