Oxidation-induced catalytic performance of heterostructured Ni-TiO2 nanoparticles and formation of Leuco-Methylene blue

Research on Chemical Intermediates - Tập 48 - Trang 4475-4501 - 2022
Kazi Hasibur Rahman1, Asit Kumar Kar1, Kuan-Chung Chen2
1Micro and Nanoscience Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
2Department of Environmental Science & Engineering, National Pingtung University of Science and Technology, Pingtung City, Taiwan

Tóm tắt

Ni-TiO2 catalysts have been successfully developed by simple sol–gel techniques with variations in Ni2+ concentration. The reduced bandgap suggests the appearance of the intragap various localized defect states and oxygen vacancies. The formation of oxygen vacancies and its effect on photocatalysis with the presence of the colour centres (F, F+, F++) in the photocatalytic mechanism by replacement of anion vacancy and electron pair displacement are discussed. The low concentration (0.02 M) of Ni2+ doping represents a large amount of oxygen vacancy, which assures the high capability of visible light absorbance. The chemical reaction mechanism of oxidation/hydrogenation-induced photocatalytic behaviour through formation of Leuco-MB is also established. The design of anatase/rutile heterostructure and the proposed mechanism of Schottky induced charge transfer phenomenon under visible light irradiation are also embedded in our work. In comparison with many other early reports, our results show that the 0.02 M concentration of Ni2+ doping has an outstanding photocatalytic activity with complete decolouration with evolution of Leuco-methylene blue and thus obtained 100% total degradation of toxic MB compounds from the aqueous solution after just only 30 min of visible light illumination.

Tài liệu tham khảo

L. Yuan, X.H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, C. Hu, ACS Nano 6, 656 (2012) C. Li, C. Koenigsmann, W. Ding, B. Rudshteyn, K.R. Yang, K.P. Regan, J.H. Kim, J. Am. Chem. Soc. 137, 1520 (2015) D.F. Ollis, E. Pelizzetti, N. Serpone, Environ. Sci. Technol. 25, 1522 (1991) P. Piccinini, C. Minero, M. Vincenti, E. Pelizzetti, J. Chem. Soc. Faraday Trans. 93, 1993 (1997) B.R. Eggins, F.L. Palmer, J.A. Byrne, Water Res. 31, 1223 (1997) M. Xing, Y. Wu, J. Zhang, F. Chen, Nanoscale 2, 1233 (2010) J. Choi, H. Park, M.R. Hoffmann, J. Phys. Chem. C. 114, 783 (2010) J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24 (2006) J. Cao, Y. Zhang, H. Tong, P. Li, T. Kako, J. Ye, ChemComm 48, 8649 (2012) T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 63, 1909 (2002) R.Y.O.J.I. Asahi, T.A.K.E.S.H.I. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001) M. Batzill, E.H. Morales, U. Diebold, Phys. Rev. Lett. 96, 026103 (2006) D.V. Lang, L.C. Kimerling, Phys. Rev. Lett. 33, 489 (1974) J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang, Langmuir 25, 1218 (2009) Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B 138, 26 (2013) Y. Lv, Y. Zhu, Y. Zhu, J. Phys. Chem. C 117, 18520 (2013) M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, J. Am. Chem. Soc. 133, 16414 (2011) C.A. Páez, D. Poelman, J.P. Pirard, B. Heinrichs, Appl. Catal. B 94, 263 (2010) B. Guan, J. Yu, S. Guo, S. Yu, S. Han, Nanoscale Adv. 2, 1352 (2020) I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Sci. World J. 2012, 1–16 (2012) T. Sakthivel, K.A. Kumar, J. Senthilselvan, K. Jagannathan, J. Mater. Sci.: Mater. Electron 29, 2228 (2018) D. Kang, J. Li, Y. Zhang, Materials 13, 1302 (2020) D.M. Collins, M. Mostafavi, R.I. Todd, T. Connolley, A.J. Wilkinson, Acta Mater. 90, 46 (2015) A. Rinaldi, P. Peralta, K. Sieradzki, E. Traversa, S. Licoccia, J. Nanomech, Micromech. 2, 42 (2012) P. Jones, J.A. Hockey, J. Chem. Soc. Faraday Trans. 67, 2679 (1971) H.P. Boehm, Adv. Catal. 16, 179 (1966) Y.J. Lin, Y.H. Chang, W.D. Yang, B.S. Tsai, J. Non-Cryst, Solids 352, 789 (2006) Y. Wang, Y. Hao, H. Cheng, J. Ma, B. Xu, W. Li, S. Cai, J. Mater. Sci. 34, 2773 (1999) X. Shu, J. He, D. Chen, Ind. Eng. Chem. Res. 47, 4750 (2008) D.H. Kim, H.S. Park, K. Sun-Jae, K.S. Lee, Catal. Lett. 106, 29 (2006) A.Y. Kuznetsov, R. Machado, L.S. Gomes, C.A. Achete, V. Swamy, B.C. Muddle, V. Prakapenka, Appl. Phys. Lett. 94, 193117 (2009) C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D Appl. Phys. 42, 205101 (2009) H.C. Choi, S.R. Ryu, H. Ji, S.B. Kim, I. Noda, Y.M. Jung, J. Phys. Chem. B 114, 10979 (2010) Y.H. Yang, X.Y. Chen, Y. Feng, G.W. Yang, Nano Lett. 7, 3879 (2007) N.W. Wang, Y.H. Yang, G.W. Yang, J. Phys. Chem. C 113, 15480 (2009) B. Cao, W. Cai, H. Zeng, Appl. Phys. Lett. 88, 161101 (2006) A. Schildknecht, R. Sauer, K. Thonke, Phys. B: Condens. Matter. 340, 205 (2003) H. Kato, M. Sano, K. Miyamoto, T. Yao, Jpn. J. Appl. Phys. 42, 2241 (2003) F. Leiter, H. Alves, D.P. Sterer, N.G. Romanov, D.M. Hofmann, B.K. Meyer, Physica B 201, 340 (2003) R. Yu, X. Zhang, X. Huang, Res. Chem. Intermed. 48, 3259 (2022) A.S. Hassanien, A.A. Akl, J. Alloys Compd. 648, 280 (2015) W. Kallel, S. Bouattour, L.V. Ferreira, A.B. Do Rego, Mater. Chem Phys. 114, 304 (2009) C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D: Appl. Phys. 42, 205101 (2009) W. Dai, J. Long, L. Yang, S. Zhang, Y. Xu, X. Luo, S. Luo, J. Energy Chem. 61, 281 (2021) L. Yang, J. Guo, J. Zhang, S. Zhang, W. Dai, X. Xiao, S. Luo, Chem. Eng. J. 427, 131550 (2022) D. Li, J. Hua, R. Wang, Z. Tian, Res. Chem. Intermed. 48, 3335 (2022) M. Naeem, S.K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S.I. Shah, Nanotechnology 17, 2675 (2006) C. An, S. Peng, Y. Sun, Adv. Mater. 22, 2570 (2010) G.G. Nakhate, V.S. Nikam, K.G. Kanade, S. Arbuj, B.B. Kale, J.O. Baeg, Mater. Chem. Phys. 124, 976 (2010) R.R. Bhosale, S.R. Pujari, M.K. Lande, B.R. Arbad, S.B. Pawar, A.B. Gambhire, Appl. Surf. Sci. 261, 835 (2012) M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, RSC Adv. 7, 24754 (2017) Y. Yang, T. Zhang, L. Le, X. Ruan, P. Fang, C. Pan, J. Wei, Sci. Rep. 4, 1 (2014) F. Wang, S. Min, Y. Han, L. Feng, Superlattices Microstruct. 48, 170 (2010) K. Kogo, H. Yoneyama, H. Tamura, J. Phys. Chem. A 84, 1705 (1980) A. Bouddouch, E. Amaterz, B. Bakiz, F. Guinneton, A. Taoufyq, S. Villain, A. Benlhachemi, Res. Chem. Intermed. 48, 3315–34 (2022) D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003) D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, A.A. Sokol, Nat. Mater. 12, 798 (2013) T. Ohno, K. Sarukawa, M. Matsumura, New J. Chem. 26, 1167 (2002) H. Xu, P. Reunchan, S. Ouyang, H. Tong, N. Umezawa, T. Kako, J. Ye, Chem. Mater. 25, 405 (2013) C. Chen, L. Xu, G.A. Sewvandi, T. Kusunose, Y. Tanaka, S. Nakanishi, Q. Feng, Cryst. Growth Des. 14, 5801 (2014) B. Isik, V. Ugraskan, F. Cakar, O. Yazici, Res. Chem. Intermed. 1 (2022) X. Liu, C. Xu, C. Xiao, Y. Tang, X. Chen, Y. Chen, X. Wang, Res. Chem. Intermed. 1 (2022). https://doi.org/10.1007/s11164-022-04747-0 Y.N. Liu, X. Zhou, X. Wang, K. Liang, Z.K. Yang, C.C. Shen, A.W. Xu, RSC Adv. 7, 30080 (2017) A.S. Vishwanathan, R. Devkota, S. Siva Sankara Sai, G. Rao, Applied. Appl. Biochem. Biotechnol. 177, 1767 (2015) J. He, Y.E. Du, Y. Bai, J. An, X. Cai, Y. Chen, Q. Feng, Molecules 24, 2996 (2019) T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D.W. Bahnemann, Chem. Mater. 22, 2050 (2010) D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007) Y. Gong, P. Zhang, X. Xu, Y. Li, H. Li, Y. Wang, J. Catal. 297, 272 (2013) E. Haque, J.W. Jun, S.N. Talapaneni, A. Vinu, S.H. Jhung, J. Mater. Chem. 20, 10801 (2010) L. Lu, J. He, P. Wu, Y. Wu, Y. Chao, H. Li, W. Zhu, Green Chem. 20, 4453 (2018) P. Zhang, Y. Gong, H. Li, Z. Chen, Y. Wang, Nat. Commun. 4, 1 (2013) A. Sankaran, K. Kumaraguru, B. Balraj, J. Inorg. Organomet. Polym. Mater. 31, 151 (2021)