Significance of crystallinity on the photoelectrochemical and photocatalytic activity of TiO2 nanotube arrays

Applied Surface Science - Tập 313 - Trang 449-454 - 2014
S.T. Nishanthi1, S. Iyyapushpam1, B. Sundarakannan1, E. Subramanian2, D. Pathinettam Padiyan1
1Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
2Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India

Tài liệu tham khảo

Keshmiri, 2004, Development of novel TiO2 sol–gel derived composite and its photocatalytic activities for trichloroethylene oxidation, Appl. Catal. B Environ., 53, 209, 10.1016/j.apcatb.2004.05.016 Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0 Liu, 2008, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol, J. Phys. Chem. C, 112, 253, 10.1021/jp0772732 O’Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737, 10.1038/353737a0 Yoriya, 2006, Initial studies on the hydrogen gas sensing properties of highly ordered high aspect ratio TiO2 nanotube arrays 20μm to 222μm, Sens. Lett., 4, 334, 10.1166/sl.2006.042 Dubey, 2009, On the synthesis and characterization of TiO2 nanotubes, J. Nanosci. Nanotechnol., 9, 5507, 10.1166/jnn.2009.1115 Gong, 2001, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16, 3331, 10.1557/JMR.2001.0457 Mor, 2004, Photoelectrochemical properties of titania nanotubes, J. Mater. Res., 19, 2989, 10.1557/JMR.2004.0370 Paulose, 2006, Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays, J. Photochem. Photobiol. A, 178, 8, 10.1016/j.jphotochem.2005.06.013 Zhu, 2011, An efficient approach to control the morphology and the adhesion properties of anodized TiO2 nanotube arrays for improved photoconversion efficiency, Electrochim. Acta, 56, 2618, 10.1016/j.electacta.2010.11.012 Zeman, 2003, Nano-scaled photocatalytic TiO2 thin films prepared by magnetron sputtering, Thin Solid Films, 433, 57, 10.1016/S0040-6090(03)00311-0 Cheng, 2009, Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile, Phys. Rev. B, 79, 092101, 10.1103/PhysRevB.79.092101 Zhao, 2009, Facile fabrication, characterization and enhanced photoelectrocatalytic degradation performance of highly oriented TiO2 nanotube arrays, J. Nanopart. Res., 11, 2153, 10.1007/s11051-009-9685-z Zhang, 2007, Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation, Environ. Sci. Technol., 41, 6259, 10.1021/es070212x Liu, 2009, Comparison of photoelectrochemical properties of TiO2 nanotube array photoanode prepared by anodization in different electrolyte, Environ. Chem. Lett., 7, 363, 10.1007/s10311-008-0180-z Kang, 2011, Fabrication of PbS nanoparticle sensitized TiO2 nanotube arrays and their photoelectrochemical properties, ACS Appl. Mater. Interfaces, 3, 746, 10.1021/am101086t Nishanthi, 2013, Remarkable role of annealing time on anatase phase titania nanotubes and its photoelectrochemical response, Electrochim. Acta, 89, 239, 10.1016/j.electacta.2012.11.008 Pathinettam Padiyan, 2013, Influence of annealing on the photoconversion efficiency of titania nanotube arrays, Trans. Mater. Res. Soc. Jpn, 38, 127, 10.14723/tmrsj.38.127 Klug, 1959 Ohsaka, 1978, Raman spectrum of anatase, TiO2, J. Raman Spectrosc., 7, 321, 10.1002/jrs.1250070606 Bersani, 1988, Raman study of nanosized titania prepared by sol–gel route, J. Non Cryst. Solids, 232, 175 Yang, 2004, Revised Kubelka–Munk theory. I. Theory and application, J. Opt. Soc. Am. A, 21, 1933, 10.1364/JOSAA.21.001933 Fang, 2008, Fabrication and photoluminescent properties of titanium oxide nanotube arrays, J. Braz. Chem. Soc., 19, 1059, 10.1590/S0103-50532008000600002 Sajjad, 2009, One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity, Appl. Catal. B Environ., 91, 397, 10.1016/j.apcatb.2009.06.005 Knorr, 2008, Trap-state distributions and carrier transport in pure and mixed-phase TiO2: influence of contacting solvent and interphasial electron transfer, J. Phys. Chem. C, 112, 12786, 10.1021/jp8039934 Murphy, 1984, Photovoltaic electrolysis: hydrogen and electricity from water and light, Int. J. Hydrogen Energy, 9, 557, 10.1016/0360-3199(84)90234-9 Varghese, 2008, Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes, Sol. Energy Mater. Sol. Cells, 92, 374, 10.1016/j.solmat.2007.11.006 Rao, 1996, Photoelectrochemical generation of hydrogen using organic pollutants in water as sacrificial electron donors, Int. J. Hydrogen Energy, 21, 95, 10.1016/0360-3199(95)00045-3 Zhu, 2000, Photocatalytic degradation of AZO dyes by supported TiO2+UV in aqueous solution, Chemosphere, 41, 303, 10.1016/S0045-6535(99)00487-7 Rashed, 2007, Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources, Int. J. Phys. Sci., 2, 73