Modeling and measuring the nocturnal drainage flow in a high‐elevation, subalpine forest with complex terrain

American Geophysical Union (AGU) - Tập 110 Số D22 - 2005
Chuixiang Yi1, Russell K. Monson1, Zhiqiang Zhai2, Dean E. Anderson3, Brian Lamb4, G. Allwine4, Andrew A. Turnipseed1,5, Sean P. Burns1
1Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
2Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA
3Water Resources Discipline, U.S. Geological Survey, Lakewood, Colorado, USA
4Laboratory for Atmospheric Research, Washington State University, Pullman, Washington, USA
5Now at Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA.

Tóm tắt

The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one‐dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within‐canopy air layer coincided with the height of maximum wake‐to‐shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain.

Từ khóa


Tài liệu tham khảo

10.1175/1520-0450(1981)020<1325:APMFWS>2.0.CO;2

10.1175/1520-0450(1968)007<0073:TAWSSW>2.0.CO;2

D. A. Anderson J. C. Tannehill R. H. Pletcher 1984 Taylor and Francis Philadelphia Pa.

10.1023/A:1024168428135

10.1007/s10546-004-7091-8

10.1023/A:1002497616547

10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

R. G. Barry 1993 Metheun New York

Bergen J. D., 1971, Vertical profiles of windspeed in a pine stand, For. Sci., 17, 314

10.1080/02723646.1983.10642230

10.1016/j.agrformet.2003.08.028

10.1029/97JD01107

10.1175/1520-0450(1965)004<0517:AMMFAF>2.0.CO;2

10.1007/BF02033923

Concentration Heat and Momentum Ltd. 1999

10.1002/qj.49709440208

10.1175/1520-0450(1981)020<0361:VATOID>2.0.CO;2

10.1007/978-1-935704-25-6_4

10.1023/B:BOUN.0000039372.86053.ff

10.1175/1520-0469(1950)007<0227:ATOAD>2.0.CO;2

Fons W. L., 1940, Influence of forest cover on wind velocity, J. For., 38, 481

10.1111/j.1365-2486.1996.tb00070.x

S. F. Hoener 1965 S. F. Hoener Midland Park N. J.

10.2151/jmsj1923.41.6_317

10.1023/A:1001509106381

Lalic B., 2002, Integrated Assessment and Decision Support: Proceedings of the 1stBiennial Meeting of the International Environmental Modelling and Software Society, 139

10.2307/2402680

10.1016/0045-7825(74)90029-2

10.1023/A:1002785830512

10.1175/1520-0469(1982)039<2701:MBOGF>2.0.CO;2

10.1016/S0168-1923(99)00161-6

10.1023/A:1018915228170

Manins P. C., 1979, A model of katabatic winds, J. Atmos. Sci., 105, 1011

10.1016/j.agrformet.2005.03.006

10.1007/BF00140075

10.1023/A:1000234813011

10.1023/A:1001810204560

Mohan M., 2004, Study of momentum transfer within a vegetation canopy, Proc. Indian Acad. Sci. Earth Planet. Sci., 113, 67, 10.1007/BF02701999

10.1046/j.1365-2486.2002.00480.x

10.1002/qj.49709741414

S. V. Patankar 1980 McGraw‐Hill New York

10.1023/B:BOUN.0000016576.05621.73

10.1007/BF00128057

10.1146/annurev.fl.13.010181.000525

10.1007/BF00117300

Schimel D. S. T. G. F.Kittel S.Running R. K.Monson A. A.Turnipseed andD.Anderson(2002) Carbon sequestration studied in western US mountains Eos Trans. AGU 83 445–449.

10.1175/1520-0450(1977)016<0514:SWSMIP>2.0.CO;2

10.1016/0002-1571(74)90082-X

10.1023/A:1014526305879

10.1016/j.agrformet.2003.09.011

10.1002/qj.49709741404

10.1016/S0168-1923(01)00290-8

10.1016/S0168-1923(03)00136-9

10.1016/j.agrformet.2004.04.007

10.1007/BF00120736

10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2

10.1063/1.858424

10.1029/2000JD900080