From dinosaurs to birds: a tail of evolution
Tóm tắt
A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events.
Tài liệu tham khảo
Chiappe LM, Witmer LM: Mesozoic Birds: Above the Heads of Dinosaurs. 2002, Berkeley, Los Angeles, and London: University of California Press
Chiappe LM: Glorified Dinosaurs: The Origin and Early Evolution of Birds. Sydney, Australia or Hoboken. 2007, NJ USA: University of New South Wales or John Wiley & Sons, Inc.
Giampietro PF, Raggio CL, Blank RD, McCarty C, Broeckel U, Pickart MA: Clinical, genetic and environmental factors associated with congenital vertebral malformations. Molecular Syndromology. 2013, 4: 94-105.
Gatesy SM: Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology. 1990, 16: 170-186.
Chiappe LM: Aves. Encyclopedia of Dinosaurs. Edited by: Currie PJ, Padian K. 1997, San Diego: Academic Press, 32-38.
Padian K: Avialae. Encyclopedia of Dinosaurs. Edited by: Currie PJ, Padian K. 1997, San Diego: Academic Press, 39-40.
Sereno PC: The origin and evolution of dinosaurs. Ann Rev Earth Planetary Sci. 1997, 25: 435-489.
Gauthier J: Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Sciences. 1986, 8: 55-
Huxley TH: On the animals which are most nearly intermediate between birds and reptiles. Annals & Magazine of Natural History. 1868, 2: 66-75.
Huxley TH: Further evidence of the affinity between the dinosaurian reptiles and birds. Q J Geol Soc. 1870, 26: 12-31.
De Beer G: Archaeopteryx lithographica. British Museum of Natural History London Publ. 1954, 1-68.
Zhou Z, Zhang F: A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature. 2002, 418: 405-409.
Persons S: Oviraptorosaur tail forms and functions. Acta Palaeontol Pol. 2013
Barsbold R, Currie PJ, Myhrvold NP, Osmolska H, Tsogtbaatar K, Watabe M: A pygostyle from a non-avian theropod. Nature. 2000, 403: 155-156.
He T, Wang X-L, Zhou Z-H: A new genus and species of caudipterid dinosaur from the Lower Cretaceous Jiufotang Formation of western Liaoning, China. Vertebrate PalAsiatica. 2008, 46: 178-189.
Xu X, Zheng X, You H: Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature. 2010, 464: 1338-1341.
Zhang F, Zhou Z, Xu X, Wang X, Sullivan C: A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature. 2008, 455: 1105-1108.
Wellnhofer P: Archaeopteryx: Icon of Evolution. 2009, Munich: Verlag Dr. Friedrich Pfeil
He HY, Wang XL, Zhou ZH, Wang F, Boven A, Shi GH, Zhu RX: Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implications. Geophys Res Lett. 2004, 31: L12605-
Zhou Z, Zhang F: Largest Bird from te Early Cretaceous and Its Implications for the Earliest Avian Ecological Diversification. Die Naturwissenschaften. 2002, 89: 34-38.
Zhou Z, Zhang F: Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can J Earth Sci. 2003, 40: 731-747.
Gao C, Chiappe LM, Meng Q, O’Connor JK, Wang X, Cheng X, Liu J: A new basal lineage of early Cretaceous birds from China and its implications on the evolution of the avian tail. Palaeontology. 2008, 51: 775-791.
Codd JR: Uncinate processes in birds: morphology, physiology and function. Comp Biochem Physiol A Mol Integr Physiol. 2010, 156: 303-308.
Tickle PG, Ennos AR, Lennox LE, Perry SF, Codd JR: Functional significance of the uncinate processes in birds. J Exp Biol. 2007, 210: 3955-3961.
Gatesy SM, Dial KP: From frond to fan: Archaeopteryx and the evolution of short-tailed birds. Evolution. 1996, 50: 2037-2048.
O'Connor J, Wang X, Sullivan C, Zheng X, Tubaro P, Zhang X, Zhou Z: Unique caudal plumage of Jeholornis and complex tail evolution in early birds. Proc Natl Acad Sci U S A. 2013, 110: 17404-17408.
Hasson O: Sexual displays as amplifiers: practical examples with an emphasis on feather decorations. Behav Ecol. 1991, 2: 189-197.
Landauer W, Dunn LC: Two types of rumplessness in domestic fowls. J Hered. 1925, 16: 153-160.
Chiappe LM: Anatomy and Systematics of the Confuciusornithidae (Theropoda: Aves) from the late Mesozoic of Northeastern China. Bull Am Mus Nat Hist. 1999, no. 242: 1-89.
Gatesy SM, Dial KP: Locomotor modules and the evolution of avian flight. Evolution. 1996, 50: 331-340.
Dececchi TA, Larsson HC: Body and limb size dissociation at the origin of birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution. 2013, 67: 2741-2752.
Gatesy SM, Dial KP: Tail muscle activity patterns in walking and flying pigeons (Columba livia). J Expl Biol. 1993, 176: 55-76.
Thomas ALR: Why do birds have tails? The tail as a drag reducing flap, and trim control. J Theor Biol. 1996, 183: 247-253.
Maybury WJ, Rayner JM, Couldrick LB: Lift generation by the avian tail. Proc Biol Sci / The Royal Society. 2001, 268: 1443-1448.
Thomas ALR, Balmford A: How natural selection shapes birds' tails. Am Nat. 1995, 146: 848-868.
Maybury WJ, Rayner JM: The avian tail reduces body parasite drag by controlling flow separation and vortex shedding. Proc Biol Sci/The Royal Society. 2001, 268: 1405-1410.
Choi KS, Cohn MJ, Harfe BD: Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn. 2008, 237: 3953-3958.
Davidson LA, Keller RE: Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development. 1999, 126: 4547-4556.
Le Douarin NM: Early neurogenesis in Amniote vertebrates. Int J Dev Biol. 2001, 45: 373-378.
Huang R, Stolte D, Kurz H, Ehehalt F, Cann GM, Stockdale FE, Patel K, Christ B: Ventral axial organs regulate expression of myotomal Fgf-8 that influences rib development. Dev Biol. 2003, 255: 30-47.
Schoenwolf GC, Chandler NB, Smith JL: Analysis of the origins and early fates of neural crest cells in caudal regions of avian embryos. Dev Biol. 1985, 110: 467-479.
Tenin G, Wright D, Ferjentsik Z, Bone R, McGrew MJ, Maroto M: The chick somitogenesis oscillator is arrested before all paraxial mesoderm is segmented into somites. BMC Dev Biol. 2010, 10: 24-
McGrew MJ, Sherman A, Lillico SG, Ellard FM, Radcliffe PA, Gilhooley HJ, Mitrophanous KA, Cambray N, Wilson V, Sang H: Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development. 2008, 135: 2289-2299.
Handrigan GR: Concordia discors: duality in the origin of the vertebrate tail. J Anat. 2003, 202: 255-267.
Gruneberg H: A ventral ectodermal ridge of the tail in mouse embryos. Nature. 1956, 177: 787-788.
Gajovic S, Kostovic-Knezevic L: Ventral ectodermal ridge and ventral ectodermal groove: two distinct morphological features in the developing rat embryo tail. Anat Embryol. 1995, 192: 181-187.
Maroto M, Bone RA, Dale JK: Somitogenesis. Development. 2012, 139: 2453-2456.
Saga Y: The mechanism of somite formation in mice. Curr Opin Genet Dev. 2012, 22: 331-338.
Freitas C, Rodrigues S, Charrier JB, Teillet MA, Palmeirim I: Evidence for medial/lateral specification and positional information within the presomitic mesoderm. Development. 2001, 128: 5139-5147.
Dubrulle J, McGrew MJ, Pourquie O: FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell. 2001, 106: 219-232.
Sawada A, Shinya M, Jiang YJ, Kawakami A, Kuroiwa A, Takeda H: Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development. 2001, 128: 4873-4880.
Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, Herrmann BG: Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell. 2003, 4: 395-406.
del Corral DR, Storey KG: g switch that controls differentiation and patterning onset in the extending vertebrate body axis. BioEssays. 2004, 26: 857-869.
Aulehla A, Wiegraebe W, Baubet V, Wahl MB, Deng C, Taketo M, Lewandoski M, Pourquie O: A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol. 2008, 10: 186-193.
Aulehla A, Pourquie O: Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol. 2010, 2: a000869-
Palmeirim I, Henrique D, Ish-Horowicz D, Pourquie O: Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell. 1997, 91: 639-648.
Ishikawa A, Kitajima S, Takahashi Y, Kokubo H, Kanno J, Inoue T, Saga Y: Mouse Nkd1, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling. Mech Dev. 2004, 121: 1443-1453.
Dale JK, Malapert P, Chal J, Vilhais-Neto G, Maroto M, Johnson T, Jayasinghe S, Trainor P, Herrmann B, Pourquie O: Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev Cell. 2006, 10: 355-366.
Dequeant ML, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquie O: A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science. 2006, 314: 1595-1598.
Niwa Y, Masamizu Y, Liu T, Nakayama R, Deng CX, Kageyama R: The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock. Dev Cell. 2007, 13: 298-304.
Bessho Y, Hirata H, Masamizu Y, Kageyama R: Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 2003, 17: 1451-1456.
Dale JK, Maroto M, Dequeant ML, Malapert P, McGrew M, Pourquie O: Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature. 2003, 421: 275-278.
Oates AC, Morelli LG, Ares S: Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development. 2012, 139: 625-639.
Rida PCG, Le Minh N, Jiang Y-J: A Notch feeling of somite segmentation and beyond. Dev Biol. 2004, 265: 2-22.
Saga Y: Segmental border is defined by the key transcription factor Mesp2, by means of the suppression of Notch activity. Dev Dyn. 2007, 236: 1450-1455.
Oginuma M, Niwa Y, Chapman DL, Saga Y: Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development. 2008, 135: 2555-2562.
Takahashi J, Ohbayashi A, Oginuma M, Saito D, Mochizuki A, Saga Y, Takada S: Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev Biol. 2010, 342: 134-145.
Sasaki N, Kiso M, Kitagawa M, Saga Y: The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development. 2011, 138: 55-64.
Krol AJ, Roellig D, Dequeant ML, Tassy O, Glynn E, Hattem G, Mushegian A, Oates AC, Pourquie O: Evolutionary plasticity of segmentation clock networks. Development. 2011, 138: 2783-2792.
Mallo M, Wellik DM, Deschamps J: Hox genes and regional patterning of the vertebrate body plan. Dev Biol. 2010, 344: 7-15.
Heffer A, Pick L: Conservation and variation in Hox genes: how insect models pioneered the evo-devo field. Annu Rev Entomol. 2013, 58: 161-179.
Dressler GR, Gruss P: Anterior boundaries of Hox gene expression in mesoderm-derived structures correlate with the linear gene order along the chromosome. Differentiation. 1989, 41: 193-201.
Duboule D, Dolle P: The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 1989, 8: 1497-1505.
Graham A, Papalopulu N, Krumlauf R: The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell. 1989, 57: 367-378.
Izpisua-Belmonte JC, Falkenstein H, Dolle P, Renucci A, Duboule D: Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. EMBO J. 1991, 10: 2279-2289.
Gaunt SJ, Strachan L: Temporal colinearity in expression of anterior Hox genes in developing chick embryos. Dev Dyn. 1996, 207: 270-280.
Iimura T, Pourquie O: Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature. 2006, 442: 568-571.
Mallo M, Vinagre T, Carapuco M: The road to the vertebral formula. Int J Dev Biol. 2009, 53: 1469-1481.
Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH: Zebrafish hox clusters and vertebrate genome evolution. Science. 1998, 282: 1711-1714.
Forlani S: Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development. 2003, 130: 3807-3819.
Young T, Rowland JE, van de Ven C, Bialecka M, Novoa A, Carapuco M, van Nes J, de Graaff W, Duluc I, Freund JN, Beck F, Mallo M, Deschamps J: Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell. 2009, 17: 516-526.
Wellik DM, Capecchi MR: Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 2003, 301: 363-367.
Jurberg AD, Aires R, Varela-Lasheras I, Novoa A, Mallo M: Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev Cell. 2013, 25: 451-462.
Brooke NM, Garcia-Fernandez J, Holland PW: The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature. 1998, 392: 920-922.
van Rooijen C, Simmini S, Bialecka M, Neijts R, van de Ven C, Beck F, Deschamps J: Evolutionarily conserved requirement of Cdx for post-occipital tissue emergence. Development. 2012, 139: 2576-2583.
Mallo M, Alonso CR: The regulation of Hox gene expression during animal development. Development. 2013, 140: 3951-3963.
Ikeya M, Takada S: Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mech Dev. 2001, 103: 27-33.
Burke AC, Nelson CE, Morgan BA, Tabin C: Hox genes and the evolution of vertebrate axial morphology. Development. 1995, 121: 333-346.
Knezevic V, De Santo R, Schughart K, Huffstadt U, Chiang C, Mahon KA, Mackem S: Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop. Development. 1997, 124: 4523-4536.
Economides KD, Zeltser L, Capecchi MR: Hoxb13 mutations cause overgrowth of caudal spinal cordand tail vertebrae. Dev Biol. 2003, 256: 317-330.
van den Akker E, Reijnen M, Korving J, Brouwer A, Meijlink F, Deschamps J: Targeted inactivation of Hoxb8 affects survival of a spinal ganglion and causes aberrant limb reflexes. Mech Dev. 1999, 89: 103-114.
Hamburger V, Hamilton HL: A series of normal stages in the development of the chick embryo. J Morphol. 1951, 88: 49-92.
Shum AS, Poon LL, Tang WW, Koide T, Chan BW, Leung YC, Shiroishi T, Copp AJ: Retinoic acid induces down-regulation of Wnt-3a, apoptosis and diversion of tail bud cells to a neural fate in the mouse embryo. Mech Dev. 1999, 84: 17-30.
Ross AC, Zolfaghari R: Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu Rev Nutr. 2011, 31: 65-87.
Abu-Abed S: Developing with lethal RA levels: genetic ablation of Rarg can restore the viability of mice lacking Cyp26a1. Development. 2003, 130: 1449-1459.
Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, Rossant J, Hamada H: The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 2001, 15: 213-225.
Iulianella A, Beckett B, Petkovich M, Lohnes D: A molecular basis for retinoic acid-induced axial truncation. Dev Biol. 1999, 205: 33-48.
Janesick A, Nguyen TT, Aisaki K, Igarashi K, Kitajima S, Chandraratna RA, Kanno J, Blumberg B: Active repression by RARgamma signaling is required for vertebrate axial elongation. Development. 2014, 141: 2260-2270.
Boulet AM, Capecchi MR: Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo. Dev Biol. 2012, 371: 235-245.
Wahl MB, Deng C, Lewandoski M, Pourquie O: FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development. 2007, 134: 4033-4041.
Hayashi S, Shimoda T, Nakajima M, Tsukada Y, Sakumura Y, Dale JK, Maroto M, Kohno K, Matsui T, Bessho Y: Sprouty4, an FGF inhibitor, displays cyclic gene expression under the control of the notch segmentation clock in the mouse PSM. PLoS One. 2009, 4: e5603-
Gonzalez A, Manosalva I, Liu T, Kageyama R: Control of Hes7 expression by Tbx6, the Wnt pathway and the chemical Gsk3 inhibitor LiCl in the mouse segmentation clock. PLoS One. 2013, 8: e53323-
Dunty WC, Biris KK, Chalamalasetty RB, Taketo MM, Lewandoski M, Yamaguchi TP: Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development. 2008, 135: 85-94.
Dubrulle J, Pourquie O: From head to tail: links between the segmentation clock and antero-posterior patterning of the embryo. Curr Opin Genet Dev. 2002, 12: 519-523.
Goldman DC, Martin GR, Tam PP: Fate and function of the ventral ectodermal ridge during mouse tail development. Development. 2000, 127: 2113-2123.
Ohta S, Suzuki K, Tachibana K, Tanaka H, Yamada G: Cessation of gastrulation is mediated by suppression of epithelial-mesenchymal transition at the ventral ectodermal ridge. Development. 2007, 134: 4315-4324.
Daane JM, Downs KM: Hedgehog signaling in the posterior region of the mouse gastrula suggests manifold roles in the fetal-umbilical connection and posterior morphogenesis. Dev Dyn. 2011, 240: 2175-2193.
Gofflot F, Hall M, Morriss-Kay GM: Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev Dyn. 1997, 210: 431-445.
Spence MS, Yip J, Erickson CA: The dorsal neural tube organizes the dermamyotome and induces axial myocytes in the avian embryo. Development. 1996, 122: 231-241.
Sela-Donenfeld D, Kalcheim C: Inhibition of noggin expression in the dorsal neural tube by somitogenesis: a mechanism for coordinating the timing of neural crest emigration. Development. 2000, 127: 4845-4854.
Liem KF, Jessell TM, Briscoe J: Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development. 2000, 127: 4855-4866.
Capdevila J, Johnson RL: Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev Biol. 1998, 197: 205-217.
Osorio L, Teillet MA, Catala M: Role of noggin as an upstream signal in the lack of neuronal derivatives found in the avian caudal-most neural crest. Development. 2009, 136: 1717-1726.
Bronner-Fraser M, Fraser SE: Differentiation of the vertebrate neural tube. Curr Opin Cell Biol. 1997, 9: 885-891.
Tanabe Y, Roelink H, Jessell TM: Induction of motor neurons by Sonic hedgehog is independent of floor plate differentiation. Curr Biol. 1995, 5: 651-658.
Afonso ND, Catala M: Sonic hedgehog and retinoic acid are not sufficient to induce motoneuron generation in the avian caudal neural tube. Dev Biol. 2005, 279: 356-367.
Teillet M, Watanabe Y, Jeffs P, Duprez D, Lapointe F, Le Douarin NM: Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development. 1998, 125: 2019-2030.
Mills CL, Bellairs R: Mitosis and cell death in the tail of the chick embryo. Anat Embryol. 1989, 180: 301-308.
Olivera-Martinez I, Harada H, Halley PA, Storey KG: Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol. 2012, 10: e1001415-
Olivera-Martinez I, Storey KG: Wnt signals provide a timing mechanism for the FGF-retinoid differentiation switch during vertebrate body axis extension. Development. 2007, 134: 2125-2135.
Miller SA, Briglin A: Apoptosis removes chick embryo tail gut and remnant of the primitive streak. Dev Dyn. 1996, 206: 212-218.
Penaloza C, Lin L, Lockshin RA, Zakeri Z: Cell death in development: shaping the embryo. Histochem Cell Biol. 2006, 126: 149-158.
Di-Poi N, Montoya-Burgos JI, Miller H, Pourquie O, Milinkovitch MC, Duboule D: Changes in Hox genes' structure and function during the evolution of the squamate body plan. Nature. 2010, 464: 99-103.
Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquie O: Control of segment number in vertebrate embryos. Nature. 2008, 454: 335-339.
de Santa BP, Roberts DJ: Tail gut endoderm and gut/genitourinary/tail development: a new tissue-specific role for Hoxa13. Development. 2002, 129: 551-561.
Bellairs R, Osmond M: The Atlas of Chick Development. 2014, Amsterdam, Boston: Elsevier, 3
Parker TJ, Haswell WA: A Text-book of Zoology. 1921, London: Macmillan and Co., Limited, 3
Wittkopp PJ, Kalay G: Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet. 2012, 13: 59-69.
Carroll SB: Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008, 134: 25-36.
Stern DL, Orgogozo V: The loci of evolution: how predictable is genetic evolution?. Evolution. 2008, 62: 2155-2177.
Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE: The Mouse Genome Database Group. 2012. The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 2012, 40: D881-D886.
Hunt BG, Ometto L, Wurm Y, Shoemaker D, Yi SV, Keller L, Goodisman MA: Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc Natl Acad Sci U S A. 2011, 108: 15936-15941.
Clarke JA, Zhou Z, Zhang F: Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. J Anat. 2006, 208: 287-308.
Xu X, Tang Z-L, Wang X-L: A therizinosaurid dinosaur with integumentary structures from China. Nature. 1999, 399: 350-354.
Christ B, Wilting J: From somites to vertebral column. Ann Anat. 1992, 174: 23-32.
Huang R, Zhi Q, Wilting J, Christ B: The fate of somitocoele cells in avian embryos. Anat Embryol. 1994, 190: 243-250.
Kato N, Aoyama H: Dermomyotomal origin of the ribs as revealed by extirpation and transplantation experiments in chick and quail embryos. Development. 1998, 125: 3437-3443.
Aoyama H, Asamoto K: The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras. Mech Dev. 2000, 99: 71-82.
Plummer NW, Spicher K, Malphurs J, Akiyama H, Abramowitz J, Nurnberg B, Birnbaumer L: Development of the mammalian axial skeleton requires signaling through the Galpha(i) subfamily of heterotrimeric G proteins. Proc Natl Acad Sci U S A. 2012, 109: 21366-21371.
Nacke S, Schafer R, de Angelis Habre M, Mundlos S: Mouse mutant "rib-vertebrae" (rv): a defect in somite polarity. Dev Dyn. 2000, 219: 192-200.
White PH: Defective somite patterning in mouse embryos with reduced levels of Tbx6. Development. 2003, 130: 1681-1690.
Kokubu C, Heinzmann U, Kokubu T, Sakai N, Kubota T, Kawai M, Wahl MB, Galceran J, Grosschedl R, Ozono K, Imai K: Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development. 2004, 131: 5469-5480.
Griffith CM, Wiley MJ: Effects of retinoic acid on chick tail bud development. Teratology. 1991, 43: 217-224.
Zwilling E: The development of dominant rumplessness in chick embryos. Genetics. 1942, 27: 641-656.
Noorai RE, Freese NH, Wright LM, Chapman SC, Clark LA: Genome-wide association mapping and identification of candidate genes for the rumpless and ear-tufted traits of the Araucana chicken. PLoS One. 2012, 7: e40974-
Cavodeassi F, Diez Del Corral R, Campuzano S, Dominguez M: Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development. 1999, 126: 4933-4942.
Glavic A, Maris Honore S, Gloria Feijoo C, Bastidas F, Allende ML, Mayor R: Role of BMP signaling and the homeoprotein Iroquois in the specification of the cranial placodal field. Dev Biol. 2004, 272: 89-103.
Heliot C, Desgrange A, Buisson I, Prunskaite-Hyyrylainen R, Shan J, Vainio S, Umbhauer M, Cereghini S: HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development. 2013, 140: 873-885.
Dunn LC, Landauer W: The genetics of the rumpless fowl with evidence of a case of changing dominance. J Genet. 1934, 29: 217-243.
Dunn LC, Landauer W: Further data on genetic modification of rumplessness in the fowl. J Genet. 1936, 33: 401-405.
Dunn LC: The inheritance of rumplessness in the domestic fowl. J Hered. 1925, 16: 127-134.
Marshall CR, Raff EC, Raff RA: Dollo's law and the death and resurrection of genes. Proc Natl Acad Sci U S A. 1994, 91: 12283-12287.
Al-Hashimi N, Lafont AG, Delgado S, Kawasaki K, Sire JY: The enamelin genes in lizard, crocodile, and frog and the pseudogene in the chicken provide new insights on enamelin evolution in tetrapods. Mol Biol Evol. 2010, 27: 2078-2094.
Sire JY, Delgado SC, Girondot M: Hen's teeth with enamel cap: from dream to impossibility. BMC Evol Biol. 2008, 8: 246-
Hutchinson JR: Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa. J Morphol. 2004, 262: 421-440.
Zhou Z, Zhang F: Mesozoic birds of China-a synoptic review. Front Biol (Beijing). 2007, 2: 1-14.
Zhou Z, Zhang F: Jeholornis compared to Archaeopteryx, with a new understanding of the earliest avian evolution. Naturwissenschaften. 2003, 90: 220-225.
