Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way
Tài liệu tham khảo
Adachi, 2001, Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses, Biosci. Biotechnol. Biochem., 65, 2755, 10.1271/bbb.65.2755
Bauer, 2005, Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process, Bioproc. Biosyst. Eng., 28, 37, 10.1007/s00449-005-0009-0
Bories, 1991, Kinetic study and optimisation of the production of dihydroxyacetone from glycerol using Gluconobacter oxydans, Process Biochem., 26, 243, 10.1016/0032-9592(91)85006-A
Claret, 1992, Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans, Curr. Microbiol., 25, 149, 10.1007/BF01571023
Claret, 1994, Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol, Appl. Microbiol. Biotechnol., 41, 359, 10.1007/BF00221232
Fidaleo, 2006, A model system for increasing the intensity of whole-cell biocatalysis: investigation of the rate of oxidation of D-sorbitol to L-sorbose by thin bi-layer latex coatings of non-growing Gluconobacter oxydans, Biotechnol. Bioeng., 95, 446, 10.1002/bit.21051
Fong, 2006, Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes, J. Biol. Chem., 281, 8024, 10.1074/jbc.M510016200
Fong, 2004, Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes, Nat. Genet., 36, 1056, 10.1038/ng1432
Gatgens, 2007, Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343, Appl. Microbiol. Biotechnol., 76, 553, 10.1007/s00253-007-1003-z
Gupta, 2001, Gluconobacter oxydans: its biotechnological applications, J. Mol. Microbiol. Biotechnol., 3, 445
Gupta, 1997, Transposon induced mutation in Gluconobacter oxydans with special reference to its direct-glucose oxidation metabolism, Fems. Microbiol. Lett., 147, 181, 10.1016/S0378-1097(96)00518-6
Habe, 2009, Glycerol conversion to D-xylulose by a two-stage microbial reaction using Candida parapsilosis and Gluconobacter oxydans, J. Oleo. Sci., 58, 595, 10.5650/jos.58.595
Habe, 2010, Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans, Biosci. Biotechnol. Biochem., 74, 1391, 10.1271/bbb.100068
Habe, 2009, Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol, Appl. Environ. Microb., 75, 7760, 10.1128/AEM.01535-09
Hekmat, 2003, Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans, Bioproc. Biosyst. Eng., 26, 109, 10.1007/s00449-003-0338-9
Holscher, 2006, Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H, J. Bacteriol., 188, 7668, 10.1128/JB.01009-06
Holscher, 2009, Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans, J. Mol. Microbiol. Biotechnol., 16, 6, 10.1159/000142890
Hua, 2006, Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains, Biotechnol. Bioeng., 95, 992, 10.1002/bit.21073
Kovach, 1994, pBBR 1 MCS: a broad-host-range cloning vector, BioTechniques, 16, 800
Krajewski, 2010, Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation, Appl. Environ. Microb., 76, 4369, 10.1128/AEM.03022-09
KulhAnek, 1989, Microbial dehydrogenations of monosaccharides, Adv. Appl. Microb., 34, 141, 10.1016/S0065-2164(08)70318-6
Kurland, 1996, Bacterial growth inhibition by overproduction of protein, Mol. Microbiol., 21, 1, 10.1046/j.1365-2958.1996.5901313.x
Li, 2010, Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans, Bioresour. Technol., 101, 8294, 10.1016/j.biortech.2010.05.065
Matsushita, 2003, 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species, Appl. Environ. Microb., 69, 1959, 10.1128/AEM.69.4.1959-1966.2003
Olijve, 1979, Analysis of growth of Gluconobacter oxydans in glucose containing media, Arch. Microbiol., 121, 283, 10.1007/BF00425069
Prust, 2005, Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans, Nat. Biotechnol., 23, 195, 10.1038/nbt1062
Rauch, 2010, Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans, Appl. Microbiol. Biotechnol., 88, 711, 10.1007/s00253-010-2779-9
Silberbach, 2003, Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile, Appl. Microbiol. Biotechnol., 62, 92, 10.1007/s00253-003-1222-x
Toyama, 2005, Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand, Biosci. Biotechnol. Biochem., 69, 1120, 10.1271/bbb.69.1120
Weenk, 1984, Ketogluconate formation by Gluconobacter species, Appl. Microbiol. Biotechnol., 20, 400, 10.1007/BF00261942
Wei, 2009, High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production, J. Ind. Microbiol. Biotechnol., 36, 1029, 10.1007/s10295-009-0584-1
Wei, 2010, Characterization of enzymes in the oxidation of 1,2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans DSM 2003, Mol. Biotechnol., 46, 26, 10.1007/s12033-010-9263-8
Wei, 2007, Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone, Prep. Biochem. Biotechnol., 37, 67, 10.1080/10826060601040954
Wethmar, 1999, Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans, Biotechnol. Tech., 13, 283, 10.1023/A:1008978903231
Zhu, 2011, Modification and evolution of Gluconobacter oxydans for enhanced growth and biotransformation capabilities at low glucose concentration, Mol. Biotechnol., 49, 56, 10.1007/s12033-011-9378-6