The multi-dimensional approach to synergistically improve the performance of inorganic thermoelectric materials: A critical review

Arabian Journal of Chemistry - Tập 14 - Trang 103103 - 2021
Y.S. Wudil1,2, M.A. Gondal1,2, M.A. Almessiere3, A.Q. Alsayoud4
1Laser Research Group, Physics Department, King Fahd University of Petroleum & Minerals (KFUPM), Mailbox 5047, Dhahran 31261, Saudi Arabia
2K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
3Department of Biophysics, Institute for Research and Medical Consultations (IRMC) Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
4Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Dhahran, Saudi Arabia

Tài liệu tham khảo

Wu, 2020, Manipulation of Band Degeneracy and Lattice Strain for Extraordinary PbTe Thermoelectrics, Research., 2020, 1, 10.34133/2020/8151059 Heo, 2019, Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films, Nat. Commun., 10, 10.1038/s41467-019-08883-x V. Pavan Kumar, A.R. Supka, P. Lemoine, O.I. Lebedev, B. Raveau, K. Suekuni, V. Nassif, R. Al Rahal Al Orabi, M. Fornari, E. Guilmeau, High Power Factors of Thermoelectric Colusites Cu 26 T 2 Ge 6 S 32 (T = Cr, Mo, W): Toward Functionalization of the Conductive “Cu–S” Network, Adv. Energy Mater. 9 (2019) 1803249. https://doi.org/10.1002/aenm.201803249. Hsieh, 2019, High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline, Nanoscale., 11, 6552, 10.1039/C8NR10537E Ahmad, 2019, Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites, Appl. Surf. Sci., 474, 2, 10.1016/j.apsusc.2018.10.163 J. Mao, H. Zhu, Z. Ding, Z. Liu, G.A. Gamage, G. Chen, Z. Ren, High thermoelectric cooling performance of n-type Mg3Bi2-based materials, Science (80-.). 365 (2019) 495–498. https://doi.org/10.1126/science.aax7792. Kleinke, 2010, New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides †, Chem. Mater., 22, 604, 10.1021/cm901591d Qian, 2019, Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe, Energy Environ. Sci., 12, 1969, 10.1039/C8EE03386B Xi, 2018, Discovery of High-Performance Thermoelectric Chalcogenides through Reliable High-Throughput Material Screening, J. Am. Chem. Soc., 140, 10785, 10.1021/jacs.8b04704 Liu, 2019, Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States, Nat. Energy., 4, 700, 10.1038/s41560-019-0430-2 Salhi, 2018, Review of recent developments and persistent challenges in stability of perovskite solar cells, Renew. Sustain. Energy Rev., 90, 210, 10.1016/j.rser.2018.03.058 H.J. Nolas, G. S.; Sharp, J.; Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments - G.S. Nolas, J. Sharp, J. Goldsmid - Google Books, n.d. https://books.google.com.sa/books?hl=en&lr=&id=QKDzCAAAQBAJ&oi=fnd&pg=PA1&dq=Nolas,+G.+S.%3B+Sharp,+J.%3B+Goldsmid,+H.+J.+Thermoelectrics:+Basic+Principles+and+New+Materials+Developments%3B+Springer:+New+York,+2001.&ots=waNssqf65m&sig=pG0VXikPXQ5oUVIYDBkp (accessed September 11, 2019). Wudil, 2020, Substrate temperature-dependent thermoelectric figure of merit of nanocrystalline Bi2Te3 and Bi2Te2.7Se0.3 prepared using pulsed laser deposition supported by DFT study, Ceram. Int., 10.1016/j.ceramint.2020.06.196 N. Mott, H. Jones, The theory of the properties of metals and alloys, (1958). Rao, 2006, Properties of nanostructured one-dimensional and composite thermoelectric materials, MRS Bull., 31, 218, 10.1557/mrs2006.48 G.A. Slack, Design concepts for improved thermoelectric materials, in: Mater. Res. Soc. Symp. - Proc., MRS, 1997: pp. 47–54. https://doi.org/10.1557/proc-478-47. Wei, 2019, Enhanced thermoelectric performance of heavy-fermion compounds YbTM2Zn20 (TM = Co, Rh, Ir) at low temperatures, Sci. Adv., 5, 10.1126/sciadv.aaw6183 Wudil, 2019, Thermal conductivity of PLD-grown thermoelectric Bi2Te2.7Se0.3 films using temperature-dependent Raman spectroscopy technique, Ceram. Int. Mahmoudinezhad, 2020, Response of thermoelectric generators to Bi2Te3 and Zn4Sb3 energy harvester materials under variant solar radiation, Renew. Energy., 146, 2488, 10.1016/j.renene.2019.08.080 Mohammadnia, 2020, Utilizing thermoelectric generator as cavity temperature controller for temperature management in dish-Stirling engine, Appl. Therm. Eng., 165, 10.1016/j.applthermaleng.2019.114568 Houshfar, 2020, Thermodynamic analysis and multi-criteria optimization of a waste-to-energy plant integrated with thermoelectric generator, Energy Convers. Manag., 205, 10.1016/j.enconman.2019.112207 Cui, 2019, Power output evaluation of a porous annular thermoelectric generator for waste heat harvesting, Int. J. Heat Mass Transf., 137, 979, 10.1016/j.ijheatmasstransfer.2019.03.157 Allison, 2019, A Wearable All-Fabric Thermoelectric Generator, Adv. Mater. Technol., 4, 1800615, 10.1002/admt.201800615 Zhao, 2019, Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology, ACS Appl. Mater. Interfaces., 11, 10301, 10.1021/acsami.8b21716 Karthick, 2019, Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review, Sol. Energy., 188, 111, 10.1016/j.solener.2019.05.075 Yuan, 2019, Improving the performance of a screen-printed micro-radioisotope thermoelectric generator through stacking integration, J. Power Sources., 414, 509, 10.1016/j.jpowsour.2019.01.040 Marefati, 2019, Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process, J. Clean. Prod., 240, 10.1016/j.jclepro.2019.118247 Angeline, 2019, Performance prediction of hybrid thermoelectric generator with high accuracy using artificial neural networks, Sustain. Energy Technol. Assessments., 33, 53, 10.1016/j.seta.2019.02.008 Elmoughni, 2019, A Textile-Integrated Polymer Thermoelectric Generator for Body Heat Harvesting, Adv. Mater. Technol., 4, 1800708, 10.1002/admt.201800708 Karthick, 2019, Theoretical and experimental evaluation of thermal interface materials and other influencing parameters for thermoelectric generator system, Renew. Energy., 134, 25, 10.1016/j.renene.2018.10.109 Pourkiaei, 2019, Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials, Energy., 186, 10.1016/j.energy.2019.07.179 Zhou, 2020, Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies, Nano Energy., 69, 10.1016/j.nanoen.2019.104397 Kong, 2019, High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting, Energy., 175, 292, 10.1016/j.energy.2019.03.060 Yang, 2019, A laterally designed all-in-one energy device using a thermoelectric generator-coupled micro supercapacitor, Nano Energy., 60, 667, 10.1016/j.nanoen.2019.04.016 Rodrigo, 2019, Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules, Appl. Energy., 238, 1150, 10.1016/j.apenergy.2019.01.132 Choi, 2019, UV-Curable Silver Electrode for Screen-Printed Thermoelectric Generator, Adv. Funct. Mater., 29, 1901505, 10.1002/adfm.201901505 Kanimba, 2019, A new dimensionless number for thermoelectric generator performance, Appl. Therm. Eng., 152, 858, 10.1016/j.applthermaleng.2019.02.093 Toberer, 2016, Solar thermoelectric generators: Pushing the efficiency up, Nat. Energy., 1, 10.1038/nenergy.2016.172 Beretta, 2019, Thermoelectrics: From history, a window to the future, Mater. Sci. Eng. R Reports., 138, 10.1016/j.mser.2018.09.001 W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.J. Hao, J.F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S.J. Pennycook, J. He, J.F. Li, L.D. Zhao, High thermoelectric performance in low-cost SnS0.91Se0.09 crystals, Science (80-.). 365 (2019) 1418–1424. https://doi.org/10.1126/science.aax5123. Wudil, 2020, Improved thermoelectric performance of ternary Cu/Ni/Bi2Te2.7Se0.3 nanocomposite prepared by pulsed laser deposition, Mater. Chem. Phys., 10.1016/j.matchemphys.2020.123321 L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science (80-.). 321 (2008) 1457–1461. https://doi.org/10.1126/science.1158899. Pichanusakorn, 2010, Nanostructured thermoelectrics, Mater. Sci. Eng. R Reports., 67, 19, 10.1016/j.mser.2009.10.001 Alam, 2013, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy., 2, 190, 10.1016/j.nanoen.2012.10.005 G.J. SNYDER, E.S. TOBERER, Complex thermoelectric materials, in: Mater. Sustain. Energy, Co-Published with Macmillan Publishers Ltd, UK, 2010: pp. 101–110. https://doi.org/10.1142/9789814317665_0016. D.R.-Crcp.B. Raton, undefined 2005, CRC handbook of thermoelectrics. 1995, (n.d.). Goldsmid, 2009, Introduction to Thermoelectricity (Springer Series in Materials Science) Dylla, 2019, Grain Boundary Engineering Nanostructured SrTiO 3 for Thermoelectric Applications, Adv. Mater. Interfaces., 6, 1900222, 10.1002/admi.201900222 Ge, 2019, Achieving an excellent thermoelectric performance in nanostructured copper sulfide bulk via a fast doping strategy, Mater. Today Phys., 8, 71, 10.1016/j.mtphys.2019.01.003 Alagar Nedunchezhian, 2019, Effect of Bismuth substitution on the enhancement of thermoelectric power factor of nanostructured Bi x Co 3–x O 4, Ceram. Int., 45, 6782, 10.1016/j.ceramint.2018.12.170 Wang, 2019, High Porosity in Nanostructured n -Type Bi 2 Te 3 Obtaining Ultralow Lattice Thermal Conductivity, ACS Appl. Mater. Interfaces., 11, 31237, 10.1021/acsami.9b12079 Wu, 2019, Highly enhanced thermoelectric properties of nanostructured Bi2S3 bulk materials: Via carrier modification and multi-scale phonon scattering, Inorg. Chem. Front., 6, 1374, 10.1039/C9QI00213H K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Science (80-.). 303 (2004) 818–821. https://doi.org/10.1126/science.1092963. Kang, 2020, Decoupled phononic-electronic transport in multi-phase n-type half-Heusler nanocomposites enabling efficient high temperature power generation, Mater. Today., 36, 63, 10.1016/j.mattod.2020.01.002 Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature., 413, 597, 10.1038/35098012 Balandin, 1998, Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, J. Appl. Phys., 84, 6149, 10.1063/1.368928 Li, 2019, Dramatically reduced lattice thermal conductivity of Mg 2 Si thermoelectric material from nanotwinning, Acta Mater., 169, 9, 10.1016/j.actamat.2019.02.041 Wang, 2019, Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction, Chem. Eng. J. X. Hu, J. Hu, X. an Fan, B. Feng, Z. Pan, P. Liu, Y. Zhang, R. Li, Z. He, G. Li, Y. Li, Artificial porous structure: An effective method to improve thermoelectric performance of Bi2Te3 based alloys, J. Solid State Chem. (2019) 121060. https://doi.org/10.1016/j.jssc.2019.121060. Zhang, 2019, Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record-High Thermoelectric Performance in Chalcopyrite, Adv. Mater., 1905210, 10.1002/adma.201905210 Zhou, 2005, Thermoelectric properties of individual electrodeposited bismuth telluride nanowires, Appl. Phys. Lett., 87, 1, 10.1063/1.2058217 Lee, 1997, Thermal conductivity of Si-Ge superlattices, Appl. Phys. Lett., 70, 2957, 10.1063/1.118755 Kim, 2006, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.045901 Wang, 2020, Core-shell nanostructures introduce multiple potential barriers to enhance energy filtering for the improvement of thermoelectric properties of SnTe, Nanoscale. Marinho, 2019, Thermoelectric properties of BiSbTe alloy nanofilms produced by DC sputtering: experiments and modeling, J. Mater. Sci. Sivaprahasam, 2019, Thermal conductivity of nanostructured Fe0.04Co0.96Sb3 skutterudite, Mater. Lett., 252, 231, 10.1016/j.matlet.2019.05.140 Gainza, 2019, Evidence of nanostructuring and reduced thermal conductivity in n-type Sb-alloyed SnSe thermoelectric polycrystals, J. Appl. Phys., 126, 10.1063/1.5108569 Fitriani, 2016, Saidur, A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery, Renew. Sustain. Energy Rev., 64, 635, 10.1016/j.rser.2016.06.035 Yin, 2019, A Review of Strategies for Developing Promising Thermoelectric Materials by Controlling Thermal Conduction, Phys. Status Solidi., 216, 1800904, 10.1002/pssa.201800904 W. Lu, S. Li, R. Xu, J. Zhang, D. Li, Z. Feng, Y. Zhang, G. Tang, Boosting Thermoelectric Performance of SnSe via Tailoring Band Structure, Suppressing Bipolar Thermal Conductivity, and Introducing Large Mass Fluctuation, ACS Appl. Mater. Interfaces. (2019) acsami.9b17811. https://doi.org/10.1021/acsami.9b17811. Hooshmand Zaferani, 2019, Strategies for engineering phonon transport in Heusler thermoelectric compounds, Renew. Sustain. Energy Rev., 112, 158, 10.1016/j.rser.2019.05.051 Biswas, 2019, Ultralow thermal conductivity and low charge carrier scattering potential in Zn 1–x Cd x Sb solid solutions for thermoelectric application, Mater. Today Energy., 12, 107, 10.1016/j.mtener.2018.12.014 Kang, 2020, Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators, ACS Appl. Mater. Interfaces., 12, 36706, 10.1021/acsami.0c08413 Shen, 2001, Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds, Appl. Phys. Lett., 79, 4165, 10.1063/1.1425459 Browning, 1999, Thermoelectric properties of the half-Heusler compound (Zr, Hf)(Ni, Pd)Sn, Mater. Res. Soc. Symp. - Proc., 545, 403, 10.1557/PROC-545-403 Zhao, 2013, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature., 489, 414, 10.1038/nature11439 Zhao, 2014, The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci., 7, 251, 10.1039/C3EE43099E T. Li, J. Yu, G. Nie, B.-P. Zhang, Q. Sun, The Ultralow Thermal Conductivity and Ultrahigh Thermoelectric Performance of Fluorinated Sn2Bi Sheet in Room Temperature, Nano Energy. (n.d.). https://doi.org/10.1016/j.nanoen.2019.104283. Banik, 2015, Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties, Chem. Mater., 27, 581, 10.1021/cm504112m Pei, 2012, Band engineering of thermoelectric materials, Adv. Mater., 24, 6125, 10.1002/adma.201202919 Lalonde, 2011, Lead telluride alloy thermoelectrics, Mater. Today., 14, 526, 10.1016/S1369-7021(11)70278-4 Zhao, 2013, High thermoelectric performance via hierarchical compositionally alloyed nanostructures, J. Am. Chem. Soc., 135, 7364, 10.1021/ja403134b Zhao, 2011, High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures, J. Am. Chem. Soc., 133, 20476, 10.1021/ja208658w Shenoy, 2019, Electronic structure engineering of tin telluride through co-doping of bismuth and indium for high performance thermoelectrics: A synergistic effect leading to a record high room temperature ZT in tin telluride, J. Mater. Chem. C., 7, 4817, 10.1039/C9TC01184F D’Souza, 2020, Electron-phonon scattering and thermoelectric transport in p -type PbTe from first principles, Phys. Rev. B., 102 J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science (80-.). 321 (2008) 554–557. https://doi.org/10.1126/science.1159725. Heremans, 2012, Resonant levels in bulk thermoelectric semiconductors, Energy Environ. Sci., 5, 5510, 10.1039/C1EE02612G Zhou, 2016, Thermoelectric performance of co-doped SnTe with resonant levels, Appl. Phys. Lett., 109, 10.1063/1.4959845 Zhang, 2013, High thermoelectric performance by resonant dopant indium in nanostructured SnTe, Proc. Natl. Acad. Sci. U. S. A., 110, 13261, 10.1073/pnas.1305735110 Ma, 2019, Enhancement of thermoelectric properties in pd-in co-doped snte and its phase transition behavior, ACS Appl. Mater. Interfaces., 11, 33792, 10.1021/acsami.9b08564 Zhu, 2019, Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials, Chem. Eng. J. Zhang, 2019, Structure transition and thermoelectric properties related to AZn(1–x)/2CuxSb (A = Ca, Eu, Sr; 0<x<1) Zintl phases, J. Alloys Compd. Gascoin, 2005, Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1-xZn2Sb2, Adv. Funct. Mater., 15, 1860, 10.1002/adfm.200500043 Zhao, 2016, Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe, J. Am. Chem. Soc., 138, 2366, 10.1021/jacs.5b13276 Khitun, 2000, Enhancement of the thermoelectric figure of merit of Si1-xGex quantum wires due to spatial confinement of acoustic phonons, Phys. E Low-Dimensional Syst. Nanostructures., 8, 13, 10.1016/S1386-9477(00)00119-3 Balandin, 2003, Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Appl. Phys. Lett., 82, 415, 10.1063/1.1539905 M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, Low-dimensional thermoelectric materials, in: Phys. Solid State, American Institute of Physics Inc., 1999: pp. 679–682. https://doi.org/10.1134/1.1130849. Hicks, 1996, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B - Condens. Matter Mater. Phys., 53, R10493, 10.1103/PhysRevB.53.R10493 Dresselhaus, 2007, New Directions for Low-Dimensional Thermoelectric Materials, Adv. Mater., 19, 1043, 10.1002/adma.200600527 Parbatani, 2019, High performance broadband bismuth telluride tetradymite topological insulator photodiode, Nanotechnology., 30, 10.1088/1361-6528/aafc84 Li, 2019, Realized high power factor and thermoelectric performance in Cu3SbSe4, Intermetallics., 109, 68, 10.1016/j.intermet.2019.03.009 Li, 2018, Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach, Nano Energy., 49, 257, 10.1016/j.nanoen.2018.04.047 Vikram, 2018, Alam, Enhanced thermoelectric performance of Mg2Si1-xSnx codoped with Bi and Cr, Phys. Rev. B., 98, 10.1103/PhysRevB.98.115204 Chen, 2018, Laser co-ablation of bismuth antimony telluride and diamond-like carbon nanocomposites for enhanced thermoelectric performance, J. Mater. Chem. A., 6, 982, 10.1039/C7TA08701B Ge, 2018, Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process, Scr. Mater., 143, 90, 10.1016/j.scriptamat.2017.09.020 Jin, 2018, Charge Transport in Thermoelectric SnSe Single Crystals, ACS Energy Lett., 3, 689, 10.1021/acsenergylett.7b01259 Ramirez, 2020, Large Scale Solid State Synthetic Technique for High Performance Thermoelectric Materials: Magnesium-Silicide-Stannide, ACS Appl. Energy Mater., 3, 2130, 10.1021/acsaem.9b02146 Mamur, 2018, A review on bismuth telluride (Bi 2 Te 3) nanostructure for thermoelectric applications, Renew. Sustain. Energy Rev., 82, 4159, 10.1016/j.rser.2017.10.112 Guo, 2016, Bi2Te3 nanoflowers assembled of defective nanosheets with enhanced thermoelectric performance, J. Alloys Compd., 659, 170, 10.1016/j.jallcom.2015.10.228 Zhang, 2013, High Yield Bi 2 Te 3 Single Crystal Nanosheets with Uniform Morphology via a Solvothermal Synthesis, Cryst. Growth Des., 13, 645, 10.1021/cg3013156 Liang, 2011, Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH, J. Alloys Compd., 509, 5147, 10.1016/j.jallcom.2011.02.015 Y. Deng, X. song Zhou, G. dan Wei, J. Liu, C.W. Nan, S. jing Zhao, Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology, J. Phys. Chem. Solids. 63 (2002) 2119–2121. https://doi.org/10.1016/S0022-3697(02)00261-5. Mntungwa, 2014, A simple route to Bi2Se3 and Bi2Te 3 nanocrystals, Superlattices Microstruct., 69, 226, 10.1016/j.spmi.2014.02.021 Wu, 2013, Effects of different morphologies of Bi2Te3 nanopowders on thermoelectric properties, J. Electron. Mater., 42, 1140, 10.1007/s11664-013-2541-z Kim, 2012, Morphology controlled synthesis of nanostructured Bi2Te 3, Bull. Korean Chem. Soc., 33, 3977, 10.5012/bkcs.2012.33.12.3977 Li, 2011, Synthesis and characterization of Bi2Te3/polyaniline composites, Mater. Sci. Semicond. Process., 14, 219, 10.1016/j.mssp.2011.02.019 Chandra, 2019, Realization of High Thermoelectric Figure of Merit in Solution Synthesized 2D SnSe Nanoplates via Ge Alloying, J. Am. Chem. Soc., 141, 6141, 10.1021/jacs.9b01396 Mi, 2010, Biomolecule-Assisted Hydrothermal Synthesis and Self-Assembly of Bi 2 Te 3 Nanostring-Cluster Hierarchical Structure, ACS Nano., 4, 2523, 10.1021/nn100267q Zhao, 2010, A facile two-step hydrothermal route for the synthesis of low-dimensional structured Bi 2 Te 3 nanocrystals with various morphologies, J. Alloys Compd., 497, 57, 10.1016/j.jallcom.2010.03.077 Wang, 2013, Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances, Nanotechnology., 24, 10.1088/0957-4484/24/28/285702 Chen, 2012, Preparation of nano-sized Bi2Te3 thermoelectric material powders by cryogenic grinding, Prog. Nat. Sci. Mater. Int., 22, 201, 10.1016/j.pnsc.2012.04.006 Gupta, 2012, ADVANCED MATERIALS Letters Synthesis of bismuth telluride nanostructures by refluxing method, Res. Artic. Adv. Mat. Lett., 2012, 50, 10.5185/amlett.2011.7285 P. Srivastava, K. Singh, Structural and thermal properties of chemically synthesized Bi 2Te3 nanoparticles, in: J. Therm. Anal. Calorim., 2012: pp. 523–527. https://doi.org/10.1007/s10973-012-2553-6. Kim, 2010, Bismuth-telluride thermoelectric nanoparticles synthesized by using a polyol process, J. Korean Phys. Soc., 57, 1037, 10.3938/jkps.57.1037 Kim, 2011, Fabrication of bismuth telluride nanoparticles using a chemical synthetic process and their thermoelectric evaluations, Powder Technol., 214, 463, 10.1016/j.powtec.2011.08.049 Scheele, 2009, Synthesis and Thermoelectric Characterization of Bi 2 Te 3 Nanoparticles, Adv. Funct. Mater., 19, 3476, 10.1002/adfm.200901261 Zakeri, 2009, Synthesis of nanocrystalline Bi2Te3 via mechanical alloying, J. Mater. Process. Technol., 209, 96, 10.1016/j.jmatprotec.2008.01.027 Tan, 2016, Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe, Nat. Commun., 7, 10.1038/ncomms12167 Nassary, 2009, Semiconductor parameters of Bi2Te3 single crystal, Mater. Chem. Phys., 113, 385, 10.1016/j.matchemphys.2008.07.106 Liu, 2016, Towards higher thermoelectric performance of Bi2Te3 via defect engineering, Scr. Mater., 111, 39, 10.1016/j.scriptamat.2015.06.031 Ashalley, 2015, Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect, Front. Mater. Sci., 9, 103, 10.1007/s11706-015-0285-9 Liu, 2012, Recent advances in thermoelectric nanocomposites, Nano Energy., 1, 42, 10.1016/j.nanoen.2011.10.001 Bhattacharya, 2000, Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1-xSbx, Appl. Phys. Lett., 77, 2476, 10.1063/1.1318237 Hinterleitner, 2019, Thermoelectric performance of a metastable thin-film Heusler alloy, Nature., 10.1038/s41586-019-1751-9 Rogl, 2020, Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity), Acta Mater., 183, 285, 10.1016/j.actamat.2019.11.010 Li, 2019, n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials, ACS Appl. Mater. Interfaces., 11, 41321, 10.1021/acsami.9b13603 Sekimoto, 2005, Thermoelectric Properties of (Ti, Zr, Hf)CoSb Type Half-Heusler Compounds, Mater. Trans., 46, 1481, 10.2320/matertrans.46.1481 Wu, 2009, Effects of Ge doping on the thermoelectric properties of TiCoSb-based p-type half-Heusler compounds, J. Alloys Compd., 467, 590, 10.1016/j.jallcom.2007.12.055 Qiu, 2009, Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds, J. Appl. Phys., 106, 10.1063/1.3238363 Chauhan, 2019, Enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation, J. Mater., 5, 94 Voronin, 2019, Electrical Transport Properties of Nb and Ga Double Substituted Fe2VAl Heusler Compounds, Semiconductors., 53, 125, 10.1134/S1063782619130207 Van Du, 2019, Synthesis and thermoelectric properties of Ti-substituted (Hf0.5Zr0.5)1-xTixNiSn0.998Sb0.002 Half-Heusler compounds, J. Alloys Compd., 773, 1141, 10.1016/j.jallcom.2018.09.268 El-Khouly, 2020, Transport and thermoelectric properties of Hf-doped FeVSb half-Heusler alloys, J. Alloys Compd., 820, 10.1016/j.jallcom.2019.153413 H. Luo, Q. Li, K. Sun, S. Liu, Z. Liang, Magnetic properties and site preference of Ru in Heusler alloys Fe2V1-xRuxSi (x = 0.25, 0.5, 0.75, 1), J. Magn. Magn. Mater. 496 (2020). https://doi.org/10.1016/j.jmmm.2019.165908. Yan, 2011, Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers, Nano Lett., 11, 556, 10.1021/nl104138t He, 2008, Nanostructured thermoelectric skutterudite Co 1-xNi xSb 3 alloys, J. Nanosci. Nanotechnol., 8, 4003, 10.1166/jnn.2008.469 Wood, 1988, Materials for thermoelectric energy conversion, Reports Prog. Phys., 51, 459, 10.1088/0034-4885/51/4/001 Graziosi, 2019, Impact of the scattering physics on the power factor of complex thermoelectric materials, J. Appl. Phys., 126 SLACK, G. A., New Materials and Performance Limits for Thermoelectric Cooling, CRC Handb. Thermoelectr. (1995) 407–440. Nolas, 2006, Recent developments in bulk thermoelectric materials, MRS Bull., 31, 199, 10.1557/mrs2006.45 Kurosaki, 2005, Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity, Appl. Phys. Lett., 87, 10.1063/1.2009828 Kim, 2000, Structure and thermoelectric properties of Ba6Ge(25–x), Ba6Ge23Sn2, and Ba6Ge22In3: Zintl phases with a chiral clathrate structure, J. Solid State Chem., 153, 321, 10.1006/jssc.2000.8777 Okamoto, 2006, Crystal structure and thermoelectric properties of the type-I clathrate compound Ba8Ge43 with an ordered arrangement of Ge vacancies, J. Appl. Phys., 99, 10.1063/1.2169869 Nolas, 1998, Semiconducting Ge clathrates: Promising candidates for thermoelectric applications, Appl. Phys. Lett., 73, 178, 10.1063/1.121747 Iversen, 2000, Why are clathrates good candidates for thermoelectric materials?, J. Solid State Chem., 149, 455, 10.1006/jssc.1999.8534 Bentien, 2004, Thermal conductivity of thermoelectric clathrates, Phys. Rev. B - Condens. Matter Mater. Phys., 69, 10.1103/PhysRevB.69.045107 Hou, 2009, Growth and thermoelectric properties of Ba8Ga16Ge30 clathrate crystals, J. Alloys Compd., 482, 544, 10.1016/j.jallcom.2009.04.072 Wang, 2009, Synthesis and thermoelectric properties of n-type Sr8Ga 16-xGe30-y clathrates with different Ga/Ge ratios, J. Phys. D, Appl. Phys., 42 Deng, 2010, Enhancement of thermoelectric efficiency in type-VIII clathrate Ba 8Ga16Sn30 by Al substitution for Ga, J. Appl. Phys., 108, 10.1063/1.3490776 S. Deng, Y. Saiga, K.K.-J. of A. Physics, undefined 2010, Toshiro Takabatake-High Thermoelectric Performance of Cu Substitution Type VIII Clathrates Ba8Ga16-xCuxGe30 Single Crystals, (n.d.). Bobev, 2001, Clathrate III of Group 14 Exists After All, J. Am. Chem. Soc., 123, 3389, 10.1021/ja010010f Shi, 2005, Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.185503 Nie, 2019, High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials, Nano Energy., 10.1016/j.nanoen.2019.104193 Qin, 2019, Enhanced Thermoelectric and Mechanical Properties in Yb 0.3 Co 4 Sb 12 with In Situ Formed CoSi Nanoprecipitates, Adv. Energy Mater., 9, 1902435, 10.1002/aenm.201902435 Tanahashi, 2002, Formation of Cerium-Filled Skutterudite Thermoelectric Materials Sintered from Gas-Atomized Powder, Mater. Trans., 43, 1214, 10.2320/matertrans.43.1214 J. Junga, S. Urb, I.K.-J. of C.P. Research, undefined 2009, Thermoelectric properties of SnzCo4Sb11. 2Te0. 8 skutterudites, (n.d.). Shi, 2011, Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports, J. Am. Chem. Soc., 133, 7837, 10.1021/ja111199y G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, in: Mater. Sustain. Energy A Collect. Peer-Reviewed Res. Rev. Artic. from Nat. Publ. Gr., World Scientific Publishing Co., 2010: pp. 101–110. https://doi.org/10.1142/9789814317665_0016. Zhang, 2019, High-Performance N-type Mg 3 Sb 2 towards Thermoelectric Application near Room Temperature, Adv. Funct. Mater., 1906143 Mohammadnia, 2020, Hybrid energy harvesting system to maximize power generation from solar energy, Energy Convers. Manag., 205, 10.1016/j.enconman.2019.112352 Rahman, 2020, Performance and life cycle analysis of a novel portable solar thermoelectric refrigerator, Case Stud. Therm. Eng., 19, 10.1016/j.csite.2020.100599 Luo, 2020, Modified phase change materials used for thermal management of a novel solar thermoelectric generator, Energy Convers. Manag., 208, 10.1016/j.enconman.2019.112459 A. Riahi, A. Ben Haj Ali, A. Fadhel, A. Guizani, M. Balghouthi, Performance investigation of a concentrating photovoltaic thermal hybrid solar system combined with thermoelectric generators, Energy Convers. Manag. 205 (2020) 112377. https://doi.org/10.1016/j.enconman.2019.112377. Y. Sargolzaeiaval, V. Padmanabhan Ramesh, T. V. Neumann, V. Misra, D. Vashaee, M.D. Dickey, M.C. Öztürk, Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects, Appl. Energy. 262 (2020) 114370. https://doi.org/10.1016/j.apenergy.2019.114370. Jia, 2020, Design study of Bismuth-Telluride-based thermoelectric generators based on thermoelectric and mechanical performance, Energy., 190, 10.1016/j.energy.2019.116226 Kishore, 2020, High-Performance Thermoelectric Generators for Field Deployments, ACS Appl. Mater. Interfaces., 10.1021/acsami.9b21299 Ishaq, 2020, Development and performance investigation of a biomass gasification based integrated system with thermoelectric generators, J. Clean. Prod., 10.1016/j.jclepro.2020.120625 Araiz, 2020, Prospects of waste-heat recovery from a real industry using thermoelectric generators: Economic and power output analysis, Energy Convers. Manag., 205, 10.1016/j.enconman.2019.112376 Lv, 2020, Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference, Energy Convers. Manag., 207, 10.1016/j.enconman.2020.112516 Riffat, 2003, Thermoelectrics: A review of present and potential applications, Appl. Therm. Eng., 23, 913, 10.1016/S1359-4311(03)00012-7 Hamid Elsheikh, 2014, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renew, Sustain. Energy Rev., 30, 337, 10.1016/j.rser.2013.10.027 Brito, 2020, Efficiency improvement of vehicles using temperature controlled exhaust thermoelectric generators, Energy Convers. Manag., 203, 10.1016/j.enconman.2019.112255 S. Shoeibi, N. Rahbar, A. Abedini Esfahlani, H. Kargarsharifabad, Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis, Appl. Energy. 263 (2020) 114581. https://doi.org/10.1016/j.apenergy.2020.114581. Cai, 2020, Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: Bidirectional modeling and performance optimization, J. Clean. Prod., 254, 10.1016/j.jclepro.2020.120150 Zhao, 2020, Radiative sky cooling-assisted thermoelectric cooling system for building applications, Energy., 190, 10.1016/j.energy.2019.116322 Wang, 2020, Multifunctional inorganic nanomaterials for energy applications, Nanoscale., 12, 14, 10.1039/C9NR07008G Meng, 2020, Thermoelectric applications of chalcogenides, Chalcogenide, Elsevier, 31, 10.1016/B978-0-08-102687-8.00002-6 Gholikhani, 2020, A critical review of roadway energy harvesting technologies, Appl. Energy., 261, 10.1016/j.apenergy.2019.114388 Saha, 2020, Photovoltaic (PV) and thermo-electric energy harvesters for charging applications, Microelectronics J., 96, 10.1016/j.mejo.2019.104685 Yu, 2020, Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation, Geomech. Geophys. Geo-Energy Geo-Resources., 6, 1 N. Pryds, R. Bjørk, Oxide thermoelectrics: From materials to module, in: Adv. Ceram. Energy Convers. Storage, Elsevier, 2020: pp. 131–156. https://doi.org/10.1016/b978-0-08-102726-4.00004-1. Rodriguez, 2019, Review and Trends of Thermoelectric Generator Heat Recovery in Automotive Applications, IEEE Trans. Veh. Technol., 68, 5366, 10.1109/TVT.2019.2908150 Vullers, 2009, Micropower energy harvesting, Solid. State. Electron., 53, 684, 10.1016/j.sse.2008.12.011 Wang, 2019, Flexible Thermoelectric Materials and Generators: Challenges and Innovations, Adv. Mater., 31, 1807916, 10.1002/adma.201807916 Soleimani, 2020, A review on recent developments of thermoelectric materials for room-temperature applications, Sustain. Energy Technol. Assessments., 37 Sharma, 2020, Thermal transport properties of boron nitride based materials: A review, Renew. Sustain. Energy Rev., 120, 10.1016/j.rser.2019.109622 M. Wolf, R. Hinterding, A. Feldhoff, High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application, Entropy. 21 (2019) 1058. https://doi.org/10.3390/e21111058. Jaziri, 2019, A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Reports. Jiang, 2020, Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials, Energy Environ. Sci., 13, 579, 10.1039/C9EE03410B Nozariasbmarz, 2020, Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems, Appl. Energy., 258, 10.1016/j.apenergy.2019.114069 Zhang, 2019, Flexible Organic Thermoelectric Materials and Devices for Wearable Green Energy Harvesting, Polymers (Basel)., 11, 909, 10.3390/polym11050909 Cai, 2019, Promising materials for thermoelectric applications, J. Alloys Compd., 806, 471, 10.1016/j.jallcom.2019.07.147 Yu, 2009, Thermoelectric automotive waste heat energy recovery using maximum power point tracking, Energy Convers. Manag., 50, 1506, 10.1016/j.enconman.2009.02.015 Hsu, 2011, Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators, Appl. Energy., 88, 1291, 10.1016/j.apenergy.2010.10.005 Karri, 2011, Exhaust energy conversion by thermoelectric generator: Two case studies, Energy Convers. Manag., 52, 1596, 10.1016/j.enconman.2010.10.013 Gou, 2013, A dynamic model for thermoelectric generator applied in waste heat recovery, Energy., 52, 201, 10.1016/j.energy.2013.01.040 Suter, 2010, Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation, Materials (Basel)., 3, 2735, 10.3390/ma3042735 He, 2012, A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors, Renew. Energy., 37, 142, 10.1016/j.renene.2011.06.002 Miljkovic, 2011, Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons, Sol. Energy., 85, 2843, 10.1016/j.solener.2011.08.021 Zhang, 2019, Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials, Polymers (Basel)., 11, 167, 10.3390/polym11010167 P. Eklund, S. Kerdsongpanya, B. Alling, Transition-Metal-Nitride-Based Thin Films as Novel Thermoelectric Materials, in: Thermoelectr. Thin Film., Springer International Publishing, 2019: pp. 121–138. https://doi.org/10.1007/978-3-030-20043-5_6. Li, 2020, Recent Progress of Two-Dimensional Thermoelectric Materials, Nano-Micro Lett., 12, 1, 10.1007/s40820-020-0374-x Sun, 2019, Advances in n-Type Organic Thermoelectric Materials and Devices, Adv. Electron. Mater., 5, 1800825, 10.1002/aelm.201800825 Putri, 2019, Nanoarchitectured titanium complexes for thermal mitigation in thermoelectric materials, Renew. Sustain. Energy Rev., 101, 346, 10.1016/j.rser.2018.10.006 Zhao, 2019, Recent Advances in Liquid-Like Thermoelectric Materials, Adv. Funct. Mater., 30, 1903867, 10.1002/adfm.201903867 Di Liu, 2020, Promising and Eco-Friendly Cu2X-Based Thermoelectric Materials: Progress and Applications, Adv. Mater., 32, 1905703, 10.1002/adma.201905703 P. MohanKumar, V. Jagadeesh Babu, A. Subramanian, A. Bandla, N. Thakor, S. Ramakrishna, H. Wei, Thermoelectric Materials—Strategies for Improving Device Performance and Its Medical Applications, Sci. 1 (2019) 37. https://doi.org/10.3390/sci1020037. Li, 2019, Present and future thermoelectric materials toward wearable energy harvesting, Appl. Mater. Today., 15, 543, 10.1016/j.apmt.2019.04.007 Liu, 2019, Printable Thermoelectric Materials and Applications, Front. Mater., 6, 88, 10.3389/fmats.2019.00088 Chein, 2004, Thermoelectric cooler application in electronic cooling, Appl. Therm. Eng., 24, 2207, 10.1016/j.applthermaleng.2004.03.001 Putra, 2011, Iskandar, Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment, Exp. Therm. Fluid Sci., 35, 1274, 10.1016/j.expthermflusci.2011.04.015 Y. Zhou, J. Yu, Design optimization of thermoelectric cooling systems for applications in electronic devices, in: Int. J. Refrig., Elsevier, 2012: pp. 1139–1144. https://doi.org/10.1016/j.ijrefrig.2011.12.003. Wang, 2013, Optimization of heat sink configuration for thermoelectric cooling system based on entropy generation analysis, Int. J. Heat Mass Transf., 63, 361, 10.1016/j.ijheatmasstransfer.2013.03.078 S.A. Abdul-Wahab, A. Elkamel, A.M. Al-Damkhi, I.A. Al-Habsi, H.S. Al-Rubai’ey’, A.K. Al-Battashi, A.R. Al-Tamimi, K.H. Al-Mamari, M.U. Chutani, Design and experimental investigation of portable solar thermoelectric refrigerator, Renew. Energy. 34 (2009) 30–34. https://doi.org/10.1016/j.renene.2008.04.026. Dai, 2003, Experimental investigation on a thermoelectric refrigerator driven by solar cells, Renew. Energy., 28, 949, 10.1016/S0960-1481(02)00055-1 Shen, 2013, Investigation of a novel thermoelectric radiant air-conditioning system, Energy Build., 59, 123, 10.1016/j.enbuild.2012.12.041 Riffat, 2004, Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners, Appl. Therm. Eng., 24, 1979, 10.1016/j.applthermaleng.2004.02.010 Hirota, 2007, 120 × 90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber, Sensors Actuators, A Phys., 135, 146, 10.1016/j.sna.2006.06.058 Chen, 2019, Active Thermoelectric Vacuum Sensor Based on Frequency Modulation, Micromachines., 11, 15, 10.3390/mi11010015 Huang, 2020, Self-Powered Temperature Sensor with Seebeck Effect Transduction for Photothermal-Thermoelectric Coupled Immunoassay, Anal. Chem., 92, 2809, 10.1021/acs.analchem.9b05218 El-Genk, 2006, Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples, Energy Convers. Manag., 47, 174, 10.1016/j.enconman.2005.03.023 Ma, 2021, Ultra-high thermoelectric performance in SnTe by the integration of several optimization strategies, Mater. Today Phys., 17 J.-W.G. Bos, Recent developments in half-Heusler thermoelectric materials, in: Thermoelectr. Energy Convers., Elsevier, 2021: pp. 125–142. https://doi.org/10.1016/b978-0-12-818535-3.00014-1. Y. Tsai, P. Wei, L. Chang, K. Wang, C. Yang, Y. Lai, C. Hsing, C. Wei, J. He, G.J. Snyder, H. Wu, Thermoelectric Materials: Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe (Adv. Mater. 1/2021), Adv. Mater. 33 (2021) 2170008. https://doi.org/10.1002/adma.202170008. Yang, 2016, On the tuning of electrical and thermal transport in thermoelectrics: An integrated theory-experiment perspective, Npj Comput. Mater., 2, 1, 10.1038/npjcompumats.2015.15 Song, 2019, Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg 3+δ Y 0.02 Sb 1.5 Bi 0.5, Mater. Today Phys., 8, 25, 10.1016/j.mtphys.2018.12.004 Wu, 2019, Lattice Strain Advances Thermoelectrics, Joule., 3, 1276, 10.1016/j.joule.2019.02.008 Vining, 2009, An inconvenient truth about thermoelectrics, Nat. Mater., 8, 83, 10.1038/nmat2361 Saidur, 2012, Technologies to recover exhaust heat from internal combustion engines, Renew. Sustain. Energy Rev., 16, 5649, 10.1016/j.rser.2012.05.018 Hyland, 2016, Wearable thermoelectric generators for human body heat harvesting, Appl. Energy., 182, 518, 10.1016/j.apenergy.2016.08.150 Irshad, 2019, Study of thermoelectric and photovoltaic facade system for energy efficient building development: A review, J. Clean. Prod., 209, 1376, 10.1016/j.jclepro.2018.09.245