The multi-dimensional approach to synergistically improve the performance of inorganic thermoelectric materials: A critical review
Tài liệu tham khảo
Wu, 2020, Manipulation of Band Degeneracy and Lattice Strain for Extraordinary PbTe Thermoelectrics, Research., 2020, 1, 10.34133/2020/8151059
Heo, 2019, Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films, Nat. Commun., 10, 10.1038/s41467-019-08883-x
V. Pavan Kumar, A.R. Supka, P. Lemoine, O.I. Lebedev, B. Raveau, K. Suekuni, V. Nassif, R. Al Rahal Al Orabi, M. Fornari, E. Guilmeau, High Power Factors of Thermoelectric Colusites Cu 26 T 2 Ge 6 S 32 (T = Cr, Mo, W): Toward Functionalization of the Conductive “Cu–S” Network, Adv. Energy Mater. 9 (2019) 1803249. https://doi.org/10.1002/aenm.201803249.
Hsieh, 2019, High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline, Nanoscale., 11, 6552, 10.1039/C8NR10537E
Ahmad, 2019, Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites, Appl. Surf. Sci., 474, 2, 10.1016/j.apsusc.2018.10.163
J. Mao, H. Zhu, Z. Ding, Z. Liu, G.A. Gamage, G. Chen, Z. Ren, High thermoelectric cooling performance of n-type Mg3Bi2-based materials, Science (80-.). 365 (2019) 495–498. https://doi.org/10.1126/science.aax7792.
Kleinke, 2010, New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides †, Chem. Mater., 22, 604, 10.1021/cm901591d
Qian, 2019, Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe, Energy Environ. Sci., 12, 1969, 10.1039/C8EE03386B
Xi, 2018, Discovery of High-Performance Thermoelectric Chalcogenides through Reliable High-Throughput Material Screening, J. Am. Chem. Soc., 140, 10785, 10.1021/jacs.8b04704
Liu, 2019, Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States, Nat. Energy., 4, 700, 10.1038/s41560-019-0430-2
Salhi, 2018, Review of recent developments and persistent challenges in stability of perovskite solar cells, Renew. Sustain. Energy Rev., 90, 210, 10.1016/j.rser.2018.03.058
H.J. Nolas, G. S.; Sharp, J.; Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments - G.S. Nolas, J. Sharp, J. Goldsmid - Google Books, n.d. https://books.google.com.sa/books?hl=en&lr=&id=QKDzCAAAQBAJ&oi=fnd&pg=PA1&dq=Nolas,+G.+S.%3B+Sharp,+J.%3B+Goldsmid,+H.+J.+Thermoelectrics:+Basic+Principles+and+New+Materials+Developments%3B+Springer:+New+York,+2001.&ots=waNssqf65m&sig=pG0VXikPXQ5oUVIYDBkp (accessed September 11, 2019).
Wudil, 2020, Substrate temperature-dependent thermoelectric figure of merit of nanocrystalline Bi2Te3 and Bi2Te2.7Se0.3 prepared using pulsed laser deposition supported by DFT study, Ceram. Int., 10.1016/j.ceramint.2020.06.196
N. Mott, H. Jones, The theory of the properties of metals and alloys, (1958).
Rao, 2006, Properties of nanostructured one-dimensional and composite thermoelectric materials, MRS Bull., 31, 218, 10.1557/mrs2006.48
G.A. Slack, Design concepts for improved thermoelectric materials, in: Mater. Res. Soc. Symp. - Proc., MRS, 1997: pp. 47–54. https://doi.org/10.1557/proc-478-47.
Wei, 2019, Enhanced thermoelectric performance of heavy-fermion compounds YbTM2Zn20 (TM = Co, Rh, Ir) at low temperatures, Sci. Adv., 5, 10.1126/sciadv.aaw6183
Wudil, 2019, Thermal conductivity of PLD-grown thermoelectric Bi2Te2.7Se0.3 films using temperature-dependent Raman spectroscopy technique, Ceram. Int.
Mahmoudinezhad, 2020, Response of thermoelectric generators to Bi2Te3 and Zn4Sb3 energy harvester materials under variant solar radiation, Renew. Energy., 146, 2488, 10.1016/j.renene.2019.08.080
Mohammadnia, 2020, Utilizing thermoelectric generator as cavity temperature controller for temperature management in dish-Stirling engine, Appl. Therm. Eng., 165, 10.1016/j.applthermaleng.2019.114568
Houshfar, 2020, Thermodynamic analysis and multi-criteria optimization of a waste-to-energy plant integrated with thermoelectric generator, Energy Convers. Manag., 205, 10.1016/j.enconman.2019.112207
Cui, 2019, Power output evaluation of a porous annular thermoelectric generator for waste heat harvesting, Int. J. Heat Mass Transf., 137, 979, 10.1016/j.ijheatmasstransfer.2019.03.157
Allison, 2019, A Wearable All-Fabric Thermoelectric Generator, Adv. Mater. Technol., 4, 1800615, 10.1002/admt.201800615
Zhao, 2019, Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology, ACS Appl. Mater. Interfaces., 11, 10301, 10.1021/acsami.8b21716
Karthick, 2019, Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review, Sol. Energy., 188, 111, 10.1016/j.solener.2019.05.075
Yuan, 2019, Improving the performance of a screen-printed micro-radioisotope thermoelectric generator through stacking integration, J. Power Sources., 414, 509, 10.1016/j.jpowsour.2019.01.040
Marefati, 2019, Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process, J. Clean. Prod., 240, 10.1016/j.jclepro.2019.118247
Angeline, 2019, Performance prediction of hybrid thermoelectric generator with high accuracy using artificial neural networks, Sustain. Energy Technol. Assessments., 33, 53, 10.1016/j.seta.2019.02.008
Elmoughni, 2019, A Textile-Integrated Polymer Thermoelectric Generator for Body Heat Harvesting, Adv. Mater. Technol., 4, 1800708, 10.1002/admt.201800708
Karthick, 2019, Theoretical and experimental evaluation of thermal interface materials and other influencing parameters for thermoelectric generator system, Renew. Energy., 134, 25, 10.1016/j.renene.2018.10.109
Pourkiaei, 2019, Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials, Energy., 186, 10.1016/j.energy.2019.07.179
Zhou, 2020, Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies, Nano Energy., 69, 10.1016/j.nanoen.2019.104397
Kong, 2019, High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting, Energy., 175, 292, 10.1016/j.energy.2019.03.060
Yang, 2019, A laterally designed all-in-one energy device using a thermoelectric generator-coupled micro supercapacitor, Nano Energy., 60, 667, 10.1016/j.nanoen.2019.04.016
Rodrigo, 2019, Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules, Appl. Energy., 238, 1150, 10.1016/j.apenergy.2019.01.132
Choi, 2019, UV-Curable Silver Electrode for Screen-Printed Thermoelectric Generator, Adv. Funct. Mater., 29, 1901505, 10.1002/adfm.201901505
Kanimba, 2019, A new dimensionless number for thermoelectric generator performance, Appl. Therm. Eng., 152, 858, 10.1016/j.applthermaleng.2019.02.093
Toberer, 2016, Solar thermoelectric generators: Pushing the efficiency up, Nat. Energy., 1, 10.1038/nenergy.2016.172
Beretta, 2019, Thermoelectrics: From history, a window to the future, Mater. Sci. Eng. R Reports., 138, 10.1016/j.mser.2018.09.001
W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.J. Hao, J.F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S.J. Pennycook, J. He, J.F. Li, L.D. Zhao, High thermoelectric performance in low-cost SnS0.91Se0.09 crystals, Science (80-.). 365 (2019) 1418–1424. https://doi.org/10.1126/science.aax5123.
Wudil, 2020, Improved thermoelectric performance of ternary Cu/Ni/Bi2Te2.7Se0.3 nanocomposite prepared by pulsed laser deposition, Mater. Chem. Phys., 10.1016/j.matchemphys.2020.123321
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science (80-.). 321 (2008) 1457–1461. https://doi.org/10.1126/science.1158899.
Pichanusakorn, 2010, Nanostructured thermoelectrics, Mater. Sci. Eng. R Reports., 67, 19, 10.1016/j.mser.2009.10.001
Alam, 2013, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy., 2, 190, 10.1016/j.nanoen.2012.10.005
G.J. SNYDER, E.S. TOBERER, Complex thermoelectric materials, in: Mater. Sustain. Energy, Co-Published with Macmillan Publishers Ltd, UK, 2010: pp. 101–110. https://doi.org/10.1142/9789814317665_0016.
D.R.-Crcp.B. Raton, undefined 2005, CRC handbook of thermoelectrics. 1995, (n.d.).
Goldsmid, 2009, Introduction to Thermoelectricity (Springer Series in Materials Science)
Dylla, 2019, Grain Boundary Engineering Nanostructured SrTiO 3 for Thermoelectric Applications, Adv. Mater. Interfaces., 6, 1900222, 10.1002/admi.201900222
Ge, 2019, Achieving an excellent thermoelectric performance in nanostructured copper sulfide bulk via a fast doping strategy, Mater. Today Phys., 8, 71, 10.1016/j.mtphys.2019.01.003
Alagar Nedunchezhian, 2019, Effect of Bismuth substitution on the enhancement of thermoelectric power factor of nanostructured Bi x Co 3–x O 4, Ceram. Int., 45, 6782, 10.1016/j.ceramint.2018.12.170
Wang, 2019, High Porosity in Nanostructured n -Type Bi 2 Te 3 Obtaining Ultralow Lattice Thermal Conductivity, ACS Appl. Mater. Interfaces., 11, 31237, 10.1021/acsami.9b12079
Wu, 2019, Highly enhanced thermoelectric properties of nanostructured Bi2S3 bulk materials: Via carrier modification and multi-scale phonon scattering, Inorg. Chem. Front., 6, 1374, 10.1039/C9QI00213H
K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Science (80-.). 303 (2004) 818–821. https://doi.org/10.1126/science.1092963.
Kang, 2020, Decoupled phononic-electronic transport in multi-phase n-type half-Heusler nanocomposites enabling efficient high temperature power generation, Mater. Today., 36, 63, 10.1016/j.mattod.2020.01.002
Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature., 413, 597, 10.1038/35098012
Balandin, 1998, Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, J. Appl. Phys., 84, 6149, 10.1063/1.368928
Li, 2019, Dramatically reduced lattice thermal conductivity of Mg 2 Si thermoelectric material from nanotwinning, Acta Mater., 169, 9, 10.1016/j.actamat.2019.02.041
Wang, 2019, Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction, Chem. Eng. J.
X. Hu, J. Hu, X. an Fan, B. Feng, Z. Pan, P. Liu, Y. Zhang, R. Li, Z. He, G. Li, Y. Li, Artificial porous structure: An effective method to improve thermoelectric performance of Bi2Te3 based alloys, J. Solid State Chem. (2019) 121060. https://doi.org/10.1016/j.jssc.2019.121060.
Zhang, 2019, Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record-High Thermoelectric Performance in Chalcopyrite, Adv. Mater., 1905210, 10.1002/adma.201905210
Zhou, 2005, Thermoelectric properties of individual electrodeposited bismuth telluride nanowires, Appl. Phys. Lett., 87, 1, 10.1063/1.2058217
Lee, 1997, Thermal conductivity of Si-Ge superlattices, Appl. Phys. Lett., 70, 2957, 10.1063/1.118755
Kim, 2006, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.045901
Wang, 2020, Core-shell nanostructures introduce multiple potential barriers to enhance energy filtering for the improvement of thermoelectric properties of SnTe, Nanoscale.
Marinho, 2019, Thermoelectric properties of BiSbTe alloy nanofilms produced by DC sputtering: experiments and modeling, J. Mater. Sci.
Sivaprahasam, 2019, Thermal conductivity of nanostructured Fe0.04Co0.96Sb3 skutterudite, Mater. Lett., 252, 231, 10.1016/j.matlet.2019.05.140
Gainza, 2019, Evidence of nanostructuring and reduced thermal conductivity in n-type Sb-alloyed SnSe thermoelectric polycrystals, J. Appl. Phys., 126, 10.1063/1.5108569
Fitriani, 2016, Saidur, A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery, Renew. Sustain. Energy Rev., 64, 635, 10.1016/j.rser.2016.06.035
Yin, 2019, A Review of Strategies for Developing Promising Thermoelectric Materials by Controlling Thermal Conduction, Phys. Status Solidi., 216, 1800904, 10.1002/pssa.201800904
W. Lu, S. Li, R. Xu, J. Zhang, D. Li, Z. Feng, Y. Zhang, G. Tang, Boosting Thermoelectric Performance of SnSe via Tailoring Band Structure, Suppressing Bipolar Thermal Conductivity, and Introducing Large Mass Fluctuation, ACS Appl. Mater. Interfaces. (2019) acsami.9b17811. https://doi.org/10.1021/acsami.9b17811.
Hooshmand Zaferani, 2019, Strategies for engineering phonon transport in Heusler thermoelectric compounds, Renew. Sustain. Energy Rev., 112, 158, 10.1016/j.rser.2019.05.051
Biswas, 2019, Ultralow thermal conductivity and low charge carrier scattering potential in Zn 1–x Cd x Sb solid solutions for thermoelectric application, Mater. Today Energy., 12, 107, 10.1016/j.mtener.2018.12.014
Kang, 2020, Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators, ACS Appl. Mater. Interfaces., 12, 36706, 10.1021/acsami.0c08413
Shen, 2001, Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds, Appl. Phys. Lett., 79, 4165, 10.1063/1.1425459
Browning, 1999, Thermoelectric properties of the half-Heusler compound (Zr, Hf)(Ni, Pd)Sn, Mater. Res. Soc. Symp. - Proc., 545, 403, 10.1557/PROC-545-403
Zhao, 2013, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b
Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature., 489, 414, 10.1038/nature11439
Zhao, 2014, The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci., 7, 251, 10.1039/C3EE43099E
T. Li, J. Yu, G. Nie, B.-P. Zhang, Q. Sun, The Ultralow Thermal Conductivity and Ultrahigh Thermoelectric Performance of Fluorinated Sn2Bi Sheet in Room Temperature, Nano Energy. (n.d.). https://doi.org/10.1016/j.nanoen.2019.104283.
Banik, 2015, Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties, Chem. Mater., 27, 581, 10.1021/cm504112m
Pei, 2012, Band engineering of thermoelectric materials, Adv. Mater., 24, 6125, 10.1002/adma.201202919
Lalonde, 2011, Lead telluride alloy thermoelectrics, Mater. Today., 14, 526, 10.1016/S1369-7021(11)70278-4
Zhao, 2013, High thermoelectric performance via hierarchical compositionally alloyed nanostructures, J. Am. Chem. Soc., 135, 7364, 10.1021/ja403134b
Zhao, 2011, High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures, J. Am. Chem. Soc., 133, 20476, 10.1021/ja208658w
Shenoy, 2019, Electronic structure engineering of tin telluride through co-doping of bismuth and indium for high performance thermoelectrics: A synergistic effect leading to a record high room temperature ZT in tin telluride, J. Mater. Chem. C., 7, 4817, 10.1039/C9TC01184F
D’Souza, 2020, Electron-phonon scattering and thermoelectric transport in p -type PbTe from first principles, Phys. Rev. B., 102
J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science (80-.). 321 (2008) 554–557. https://doi.org/10.1126/science.1159725.
Heremans, 2012, Resonant levels in bulk thermoelectric semiconductors, Energy Environ. Sci., 5, 5510, 10.1039/C1EE02612G
Zhou, 2016, Thermoelectric performance of co-doped SnTe with resonant levels, Appl. Phys. Lett., 109, 10.1063/1.4959845
Zhang, 2013, High thermoelectric performance by resonant dopant indium in nanostructured SnTe, Proc. Natl. Acad. Sci. U. S. A., 110, 13261, 10.1073/pnas.1305735110
Ma, 2019, Enhancement of thermoelectric properties in pd-in co-doped snte and its phase transition behavior, ACS Appl. Mater. Interfaces., 11, 33792, 10.1021/acsami.9b08564
Zhu, 2019, Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials, Chem. Eng. J.
Zhang, 2019, Structure transition and thermoelectric properties related to AZn(1–x)/2CuxSb (A = Ca, Eu, Sr; 0<x<1) Zintl phases, J. Alloys Compd.
Gascoin, 2005, Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1-xZn2Sb2, Adv. Funct. Mater., 15, 1860, 10.1002/adfm.200500043
Zhao, 2016, Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe, J. Am. Chem. Soc., 138, 2366, 10.1021/jacs.5b13276
Khitun, 2000, Enhancement of the thermoelectric figure of merit of Si1-xGex quantum wires due to spatial confinement of acoustic phonons, Phys. E Low-Dimensional Syst. Nanostructures., 8, 13, 10.1016/S1386-9477(00)00119-3
Balandin, 2003, Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Appl. Phys. Lett., 82, 415, 10.1063/1.1539905
M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, Low-dimensional thermoelectric materials, in: Phys. Solid State, American Institute of Physics Inc., 1999: pp. 679–682. https://doi.org/10.1134/1.1130849.
Hicks, 1996, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B - Condens. Matter Mater. Phys., 53, R10493, 10.1103/PhysRevB.53.R10493
Dresselhaus, 2007, New Directions for Low-Dimensional Thermoelectric Materials, Adv. Mater., 19, 1043, 10.1002/adma.200600527
Parbatani, 2019, High performance broadband bismuth telluride tetradymite topological insulator photodiode, Nanotechnology., 30, 10.1088/1361-6528/aafc84
Li, 2019, Realized high power factor and thermoelectric performance in Cu3SbSe4, Intermetallics., 109, 68, 10.1016/j.intermet.2019.03.009
Li, 2018, Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach, Nano Energy., 49, 257, 10.1016/j.nanoen.2018.04.047
Vikram, 2018, Alam, Enhanced thermoelectric performance of Mg2Si1-xSnx codoped with Bi and Cr, Phys. Rev. B., 98, 10.1103/PhysRevB.98.115204
Chen, 2018, Laser co-ablation of bismuth antimony telluride and diamond-like carbon nanocomposites for enhanced thermoelectric performance, J. Mater. Chem. A., 6, 982, 10.1039/C7TA08701B
Ge, 2018, Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process, Scr. Mater., 143, 90, 10.1016/j.scriptamat.2017.09.020
Jin, 2018, Charge Transport in Thermoelectric SnSe Single Crystals, ACS Energy Lett., 3, 689, 10.1021/acsenergylett.7b01259
Ramirez, 2020, Large Scale Solid State Synthetic Technique for High Performance Thermoelectric Materials: Magnesium-Silicide-Stannide, ACS Appl. Energy Mater., 3, 2130, 10.1021/acsaem.9b02146
Mamur, 2018, A review on bismuth telluride (Bi 2 Te 3) nanostructure for thermoelectric applications, Renew. Sustain. Energy Rev., 82, 4159, 10.1016/j.rser.2017.10.112
Guo, 2016, Bi2Te3 nanoflowers assembled of defective nanosheets with enhanced thermoelectric performance, J. Alloys Compd., 659, 170, 10.1016/j.jallcom.2015.10.228
Zhang, 2013, High Yield Bi 2 Te 3 Single Crystal Nanosheets with Uniform Morphology via a Solvothermal Synthesis, Cryst. Growth Des., 13, 645, 10.1021/cg3013156
Liang, 2011, Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH, J. Alloys Compd., 509, 5147, 10.1016/j.jallcom.2011.02.015
Y. Deng, X. song Zhou, G. dan Wei, J. Liu, C.W. Nan, S. jing Zhao, Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology, J. Phys. Chem. Solids. 63 (2002) 2119–2121. https://doi.org/10.1016/S0022-3697(02)00261-5.
Mntungwa, 2014, A simple route to Bi2Se3 and Bi2Te 3 nanocrystals, Superlattices Microstruct., 69, 226, 10.1016/j.spmi.2014.02.021
Wu, 2013, Effects of different morphologies of Bi2Te3 nanopowders on thermoelectric properties, J. Electron. Mater., 42, 1140, 10.1007/s11664-013-2541-z
Kim, 2012, Morphology controlled synthesis of nanostructured Bi2Te 3, Bull. Korean Chem. Soc., 33, 3977, 10.5012/bkcs.2012.33.12.3977
Li, 2011, Synthesis and characterization of Bi2Te3/polyaniline composites, Mater. Sci. Semicond. Process., 14, 219, 10.1016/j.mssp.2011.02.019
Chandra, 2019, Realization of High Thermoelectric Figure of Merit in Solution Synthesized 2D SnSe Nanoplates via Ge Alloying, J. Am. Chem. Soc., 141, 6141, 10.1021/jacs.9b01396
Mi, 2010, Biomolecule-Assisted Hydrothermal Synthesis and Self-Assembly of Bi 2 Te 3 Nanostring-Cluster Hierarchical Structure, ACS Nano., 4, 2523, 10.1021/nn100267q
Zhao, 2010, A facile two-step hydrothermal route for the synthesis of low-dimensional structured Bi 2 Te 3 nanocrystals with various morphologies, J. Alloys Compd., 497, 57, 10.1016/j.jallcom.2010.03.077
Wang, 2013, Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances, Nanotechnology., 24, 10.1088/0957-4484/24/28/285702
Chen, 2012, Preparation of nano-sized Bi2Te3 thermoelectric material powders by cryogenic grinding, Prog. Nat. Sci. Mater. Int., 22, 201, 10.1016/j.pnsc.2012.04.006
Gupta, 2012, ADVANCED MATERIALS Letters Synthesis of bismuth telluride nanostructures by refluxing method, Res. Artic. Adv. Mat. Lett., 2012, 50, 10.5185/amlett.2011.7285
P. Srivastava, K. Singh, Structural and thermal properties of chemically synthesized Bi 2Te3 nanoparticles, in: J. Therm. Anal. Calorim., 2012: pp. 523–527. https://doi.org/10.1007/s10973-012-2553-6.
Kim, 2010, Bismuth-telluride thermoelectric nanoparticles synthesized by using a polyol process, J. Korean Phys. Soc., 57, 1037, 10.3938/jkps.57.1037
Kim, 2011, Fabrication of bismuth telluride nanoparticles using a chemical synthetic process and their thermoelectric evaluations, Powder Technol., 214, 463, 10.1016/j.powtec.2011.08.049
Scheele, 2009, Synthesis and Thermoelectric Characterization of Bi 2 Te 3 Nanoparticles, Adv. Funct. Mater., 19, 3476, 10.1002/adfm.200901261
Zakeri, 2009, Synthesis of nanocrystalline Bi2Te3 via mechanical alloying, J. Mater. Process. Technol., 209, 96, 10.1016/j.jmatprotec.2008.01.027
Tan, 2016, Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe, Nat. Commun., 7, 10.1038/ncomms12167
Nassary, 2009, Semiconductor parameters of Bi2Te3 single crystal, Mater. Chem. Phys., 113, 385, 10.1016/j.matchemphys.2008.07.106
Liu, 2016, Towards higher thermoelectric performance of Bi2Te3 via defect engineering, Scr. Mater., 111, 39, 10.1016/j.scriptamat.2015.06.031
Ashalley, 2015, Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect, Front. Mater. Sci., 9, 103, 10.1007/s11706-015-0285-9
Liu, 2012, Recent advances in thermoelectric nanocomposites, Nano Energy., 1, 42, 10.1016/j.nanoen.2011.10.001
Bhattacharya, 2000, Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1-xSbx, Appl. Phys. Lett., 77, 2476, 10.1063/1.1318237
Hinterleitner, 2019, Thermoelectric performance of a metastable thin-film Heusler alloy, Nature., 10.1038/s41586-019-1751-9
Rogl, 2020, Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity), Acta Mater., 183, 285, 10.1016/j.actamat.2019.11.010
Li, 2019, n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials, ACS Appl. Mater. Interfaces., 11, 41321, 10.1021/acsami.9b13603
Sekimoto, 2005, Thermoelectric Properties of (Ti, Zr, Hf)CoSb Type Half-Heusler Compounds, Mater. Trans., 46, 1481, 10.2320/matertrans.46.1481
Wu, 2009, Effects of Ge doping on the thermoelectric properties of TiCoSb-based p-type half-Heusler compounds, J. Alloys Compd., 467, 590, 10.1016/j.jallcom.2007.12.055
Qiu, 2009, Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds, J. Appl. Phys., 106, 10.1063/1.3238363
Chauhan, 2019, Enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation, J. Mater., 5, 94
Voronin, 2019, Electrical Transport Properties of Nb and Ga Double Substituted Fe2VAl Heusler Compounds, Semiconductors., 53, 125, 10.1134/S1063782619130207
Van Du, 2019, Synthesis and thermoelectric properties of Ti-substituted (Hf0.5Zr0.5)1-xTixNiSn0.998Sb0.002 Half-Heusler compounds, J. Alloys Compd., 773, 1141, 10.1016/j.jallcom.2018.09.268
El-Khouly, 2020, Transport and thermoelectric properties of Hf-doped FeVSb half-Heusler alloys, J. Alloys Compd., 820, 10.1016/j.jallcom.2019.153413
H. Luo, Q. Li, K. Sun, S. Liu, Z. Liang, Magnetic properties and site preference of Ru in Heusler alloys Fe2V1-xRuxSi (x = 0.25, 0.5, 0.75, 1), J. Magn. Magn. Mater. 496 (2020). https://doi.org/10.1016/j.jmmm.2019.165908.
Yan, 2011, Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers, Nano Lett., 11, 556, 10.1021/nl104138t
He, 2008, Nanostructured thermoelectric skutterudite Co 1-xNi xSb 3 alloys, J. Nanosci. Nanotechnol., 8, 4003, 10.1166/jnn.2008.469
Wood, 1988, Materials for thermoelectric energy conversion, Reports Prog. Phys., 51, 459, 10.1088/0034-4885/51/4/001
Graziosi, 2019, Impact of the scattering physics on the power factor of complex thermoelectric materials, J. Appl. Phys., 126
SLACK, G. A., New Materials and Performance Limits for Thermoelectric Cooling, CRC Handb. Thermoelectr. (1995) 407–440.
Nolas, 2006, Recent developments in bulk thermoelectric materials, MRS Bull., 31, 199, 10.1557/mrs2006.45
Kurosaki, 2005, Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity, Appl. Phys. Lett., 87, 10.1063/1.2009828
Kim, 2000, Structure and thermoelectric properties of Ba6Ge(25–x), Ba6Ge23Sn2, and Ba6Ge22In3: Zintl phases with a chiral clathrate structure, J. Solid State Chem., 153, 321, 10.1006/jssc.2000.8777
Okamoto, 2006, Crystal structure and thermoelectric properties of the type-I clathrate compound Ba8Ge43 with an ordered arrangement of Ge vacancies, J. Appl. Phys., 99, 10.1063/1.2169869
Nolas, 1998, Semiconducting Ge clathrates: Promising candidates for thermoelectric applications, Appl. Phys. Lett., 73, 178, 10.1063/1.121747
Iversen, 2000, Why are clathrates good candidates for thermoelectric materials?, J. Solid State Chem., 149, 455, 10.1006/jssc.1999.8534
Bentien, 2004, Thermal conductivity of thermoelectric clathrates, Phys. Rev. B - Condens. Matter Mater. Phys., 69, 10.1103/PhysRevB.69.045107
Hou, 2009, Growth and thermoelectric properties of Ba8Ga16Ge30 clathrate crystals, J. Alloys Compd., 482, 544, 10.1016/j.jallcom.2009.04.072
Wang, 2009, Synthesis and thermoelectric properties of n-type Sr8Ga 16-xGe30-y clathrates with different Ga/Ge ratios, J. Phys. D, Appl. Phys., 42
Deng, 2010, Enhancement of thermoelectric efficiency in type-VIII clathrate Ba 8Ga16Sn30 by Al substitution for Ga, J. Appl. Phys., 108, 10.1063/1.3490776
S. Deng, Y. Saiga, K.K.-J. of A. Physics, undefined 2010, Toshiro Takabatake-High Thermoelectric Performance of Cu Substitution Type VIII Clathrates Ba8Ga16-xCuxGe30 Single Crystals, (n.d.).
Bobev, 2001, Clathrate III of Group 14 Exists After All, J. Am. Chem. Soc., 123, 3389, 10.1021/ja010010f
Shi, 2005, Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.185503
Nie, 2019, High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials, Nano Energy., 10.1016/j.nanoen.2019.104193
Qin, 2019, Enhanced Thermoelectric and Mechanical Properties in Yb 0.3 Co 4 Sb 12 with In Situ Formed CoSi Nanoprecipitates, Adv. Energy Mater., 9, 1902435, 10.1002/aenm.201902435
Tanahashi, 2002, Formation of Cerium-Filled Skutterudite Thermoelectric Materials Sintered from Gas-Atomized Powder, Mater. Trans., 43, 1214, 10.2320/matertrans.43.1214
J. Junga, S. Urb, I.K.-J. of C.P. Research, undefined 2009, Thermoelectric properties of SnzCo4Sb11. 2Te0. 8 skutterudites, (n.d.).
Shi, 2011, Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports, J. Am. Chem. Soc., 133, 7837, 10.1021/ja111199y
G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, in: Mater. Sustain. Energy A Collect. Peer-Reviewed Res. Rev. Artic. from Nat. Publ. Gr., World Scientific Publishing Co., 2010: pp. 101–110. https://doi.org/10.1142/9789814317665_0016.
Zhang, 2019, High-Performance N-type Mg 3 Sb 2 towards Thermoelectric Application near Room Temperature, Adv. Funct. Mater., 1906143
Mohammadnia, 2020, Hybrid energy harvesting system to maximize power generation from solar energy, Energy Convers. Manag., 205, 10.1016/j.enconman.2019.112352
Rahman, 2020, Performance and life cycle analysis of a novel portable solar thermoelectric refrigerator, Case Stud. Therm. Eng., 19, 10.1016/j.csite.2020.100599
Luo, 2020, Modified phase change materials used for thermal management of a novel solar thermoelectric generator, Energy Convers. Manag., 208, 10.1016/j.enconman.2019.112459
A. Riahi, A. Ben Haj Ali, A. Fadhel, A. Guizani, M. Balghouthi, Performance investigation of a concentrating photovoltaic thermal hybrid solar system combined with thermoelectric generators, Energy Convers. Manag. 205 (2020) 112377. https://doi.org/10.1016/j.enconman.2019.112377.
Y. Sargolzaeiaval, V. Padmanabhan Ramesh, T. V. Neumann, V. Misra, D. Vashaee, M.D. Dickey, M.C. Öztürk, Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects, Appl. Energy. 262 (2020) 114370. https://doi.org/10.1016/j.apenergy.2019.114370.
Jia, 2020, Design study of Bismuth-Telluride-based thermoelectric generators based on thermoelectric and mechanical performance, Energy., 190, 10.1016/j.energy.2019.116226
Kishore, 2020, High-Performance Thermoelectric Generators for Field Deployments, ACS Appl. Mater. Interfaces., 10.1021/acsami.9b21299
Ishaq, 2020, Development and performance investigation of a biomass gasification based integrated system with thermoelectric generators, J. Clean. Prod., 10.1016/j.jclepro.2020.120625
Araiz, 2020, Prospects of waste-heat recovery from a real industry using thermoelectric generators: Economic and power output analysis, Energy Convers. Manag., 205, 10.1016/j.enconman.2019.112376
Lv, 2020, Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference, Energy Convers. Manag., 207, 10.1016/j.enconman.2020.112516
Riffat, 2003, Thermoelectrics: A review of present and potential applications, Appl. Therm. Eng., 23, 913, 10.1016/S1359-4311(03)00012-7
Hamid Elsheikh, 2014, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renew, Sustain. Energy Rev., 30, 337, 10.1016/j.rser.2013.10.027
Brito, 2020, Efficiency improvement of vehicles using temperature controlled exhaust thermoelectric generators, Energy Convers. Manag., 203, 10.1016/j.enconman.2019.112255
S. Shoeibi, N. Rahbar, A. Abedini Esfahlani, H. Kargarsharifabad, Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis, Appl. Energy. 263 (2020) 114581. https://doi.org/10.1016/j.apenergy.2020.114581.
Cai, 2020, Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: Bidirectional modeling and performance optimization, J. Clean. Prod., 254, 10.1016/j.jclepro.2020.120150
Zhao, 2020, Radiative sky cooling-assisted thermoelectric cooling system for building applications, Energy., 190, 10.1016/j.energy.2019.116322
Wang, 2020, Multifunctional inorganic nanomaterials for energy applications, Nanoscale., 12, 14, 10.1039/C9NR07008G
Meng, 2020, Thermoelectric applications of chalcogenides, Chalcogenide, Elsevier, 31, 10.1016/B978-0-08-102687-8.00002-6
Gholikhani, 2020, A critical review of roadway energy harvesting technologies, Appl. Energy., 261, 10.1016/j.apenergy.2019.114388
Saha, 2020, Photovoltaic (PV) and thermo-electric energy harvesters for charging applications, Microelectronics J., 96, 10.1016/j.mejo.2019.104685
Yu, 2020, Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation, Geomech. Geophys. Geo-Energy Geo-Resources., 6, 1
N. Pryds, R. Bjørk, Oxide thermoelectrics: From materials to module, in: Adv. Ceram. Energy Convers. Storage, Elsevier, 2020: pp. 131–156. https://doi.org/10.1016/b978-0-08-102726-4.00004-1.
Rodriguez, 2019, Review and Trends of Thermoelectric Generator Heat Recovery in Automotive Applications, IEEE Trans. Veh. Technol., 68, 5366, 10.1109/TVT.2019.2908150
Vullers, 2009, Micropower energy harvesting, Solid. State. Electron., 53, 684, 10.1016/j.sse.2008.12.011
Wang, 2019, Flexible Thermoelectric Materials and Generators: Challenges and Innovations, Adv. Mater., 31, 1807916, 10.1002/adma.201807916
Soleimani, 2020, A review on recent developments of thermoelectric materials for room-temperature applications, Sustain. Energy Technol. Assessments., 37
Sharma, 2020, Thermal transport properties of boron nitride based materials: A review, Renew. Sustain. Energy Rev., 120, 10.1016/j.rser.2019.109622
M. Wolf, R. Hinterding, A. Feldhoff, High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application, Entropy. 21 (2019) 1058. https://doi.org/10.3390/e21111058.
Jaziri, 2019, A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Reports.
Jiang, 2020, Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials, Energy Environ. Sci., 13, 579, 10.1039/C9EE03410B
Nozariasbmarz, 2020, Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems, Appl. Energy., 258, 10.1016/j.apenergy.2019.114069
Zhang, 2019, Flexible Organic Thermoelectric Materials and Devices for Wearable Green Energy Harvesting, Polymers (Basel)., 11, 909, 10.3390/polym11050909
Cai, 2019, Promising materials for thermoelectric applications, J. Alloys Compd., 806, 471, 10.1016/j.jallcom.2019.07.147
Yu, 2009, Thermoelectric automotive waste heat energy recovery using maximum power point tracking, Energy Convers. Manag., 50, 1506, 10.1016/j.enconman.2009.02.015
Hsu, 2011, Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators, Appl. Energy., 88, 1291, 10.1016/j.apenergy.2010.10.005
Karri, 2011, Exhaust energy conversion by thermoelectric generator: Two case studies, Energy Convers. Manag., 52, 1596, 10.1016/j.enconman.2010.10.013
Gou, 2013, A dynamic model for thermoelectric generator applied in waste heat recovery, Energy., 52, 201, 10.1016/j.energy.2013.01.040
Suter, 2010, Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation, Materials (Basel)., 3, 2735, 10.3390/ma3042735
He, 2012, A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors, Renew. Energy., 37, 142, 10.1016/j.renene.2011.06.002
Miljkovic, 2011, Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons, Sol. Energy., 85, 2843, 10.1016/j.solener.2011.08.021
Zhang, 2019, Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials, Polymers (Basel)., 11, 167, 10.3390/polym11010167
P. Eklund, S. Kerdsongpanya, B. Alling, Transition-Metal-Nitride-Based Thin Films as Novel Thermoelectric Materials, in: Thermoelectr. Thin Film., Springer International Publishing, 2019: pp. 121–138. https://doi.org/10.1007/978-3-030-20043-5_6.
Li, 2020, Recent Progress of Two-Dimensional Thermoelectric Materials, Nano-Micro Lett., 12, 1, 10.1007/s40820-020-0374-x
Sun, 2019, Advances in n-Type Organic Thermoelectric Materials and Devices, Adv. Electron. Mater., 5, 1800825, 10.1002/aelm.201800825
Putri, 2019, Nanoarchitectured titanium complexes for thermal mitigation in thermoelectric materials, Renew. Sustain. Energy Rev., 101, 346, 10.1016/j.rser.2018.10.006
Zhao, 2019, Recent Advances in Liquid-Like Thermoelectric Materials, Adv. Funct. Mater., 30, 1903867, 10.1002/adfm.201903867
Di Liu, 2020, Promising and Eco-Friendly Cu2X-Based Thermoelectric Materials: Progress and Applications, Adv. Mater., 32, 1905703, 10.1002/adma.201905703
P. MohanKumar, V. Jagadeesh Babu, A. Subramanian, A. Bandla, N. Thakor, S. Ramakrishna, H. Wei, Thermoelectric Materials—Strategies for Improving Device Performance and Its Medical Applications, Sci. 1 (2019) 37. https://doi.org/10.3390/sci1020037.
Li, 2019, Present and future thermoelectric materials toward wearable energy harvesting, Appl. Mater. Today., 15, 543, 10.1016/j.apmt.2019.04.007
Liu, 2019, Printable Thermoelectric Materials and Applications, Front. Mater., 6, 88, 10.3389/fmats.2019.00088
Chein, 2004, Thermoelectric cooler application in electronic cooling, Appl. Therm. Eng., 24, 2207, 10.1016/j.applthermaleng.2004.03.001
Putra, 2011, Iskandar, Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment, Exp. Therm. Fluid Sci., 35, 1274, 10.1016/j.expthermflusci.2011.04.015
Y. Zhou, J. Yu, Design optimization of thermoelectric cooling systems for applications in electronic devices, in: Int. J. Refrig., Elsevier, 2012: pp. 1139–1144. https://doi.org/10.1016/j.ijrefrig.2011.12.003.
Wang, 2013, Optimization of heat sink configuration for thermoelectric cooling system based on entropy generation analysis, Int. J. Heat Mass Transf., 63, 361, 10.1016/j.ijheatmasstransfer.2013.03.078
S.A. Abdul-Wahab, A. Elkamel, A.M. Al-Damkhi, I.A. Al-Habsi, H.S. Al-Rubai’ey’, A.K. Al-Battashi, A.R. Al-Tamimi, K.H. Al-Mamari, M.U. Chutani, Design and experimental investigation of portable solar thermoelectric refrigerator, Renew. Energy. 34 (2009) 30–34. https://doi.org/10.1016/j.renene.2008.04.026.
Dai, 2003, Experimental investigation on a thermoelectric refrigerator driven by solar cells, Renew. Energy., 28, 949, 10.1016/S0960-1481(02)00055-1
Shen, 2013, Investigation of a novel thermoelectric radiant air-conditioning system, Energy Build., 59, 123, 10.1016/j.enbuild.2012.12.041
Riffat, 2004, Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners, Appl. Therm. Eng., 24, 1979, 10.1016/j.applthermaleng.2004.02.010
Hirota, 2007, 120 × 90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber, Sensors Actuators, A Phys., 135, 146, 10.1016/j.sna.2006.06.058
Chen, 2019, Active Thermoelectric Vacuum Sensor Based on Frequency Modulation, Micromachines., 11, 15, 10.3390/mi11010015
Huang, 2020, Self-Powered Temperature Sensor with Seebeck Effect Transduction for Photothermal-Thermoelectric Coupled Immunoassay, Anal. Chem., 92, 2809, 10.1021/acs.analchem.9b05218
El-Genk, 2006, Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples, Energy Convers. Manag., 47, 174, 10.1016/j.enconman.2005.03.023
Ma, 2021, Ultra-high thermoelectric performance in SnTe by the integration of several optimization strategies, Mater. Today Phys., 17
J.-W.G. Bos, Recent developments in half-Heusler thermoelectric materials, in: Thermoelectr. Energy Convers., Elsevier, 2021: pp. 125–142. https://doi.org/10.1016/b978-0-12-818535-3.00014-1.
Y. Tsai, P. Wei, L. Chang, K. Wang, C. Yang, Y. Lai, C. Hsing, C. Wei, J. He, G.J. Snyder, H. Wu, Thermoelectric Materials: Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe (Adv. Mater. 1/2021), Adv. Mater. 33 (2021) 2170008. https://doi.org/10.1002/adma.202170008.
Yang, 2016, On the tuning of electrical and thermal transport in thermoelectrics: An integrated theory-experiment perspective, Npj Comput. Mater., 2, 1, 10.1038/npjcompumats.2015.15
Song, 2019, Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg 3+δ Y 0.02 Sb 1.5 Bi 0.5, Mater. Today Phys., 8, 25, 10.1016/j.mtphys.2018.12.004
Wu, 2019, Lattice Strain Advances Thermoelectrics, Joule., 3, 1276, 10.1016/j.joule.2019.02.008
Vining, 2009, An inconvenient truth about thermoelectrics, Nat. Mater., 8, 83, 10.1038/nmat2361
Saidur, 2012, Technologies to recover exhaust heat from internal combustion engines, Renew. Sustain. Energy Rev., 16, 5649, 10.1016/j.rser.2012.05.018
Hyland, 2016, Wearable thermoelectric generators for human body heat harvesting, Appl. Energy., 182, 518, 10.1016/j.apenergy.2016.08.150
Irshad, 2019, Study of thermoelectric and photovoltaic facade system for energy efficient building development: A review, J. Clean. Prod., 209, 1376, 10.1016/j.jclepro.2018.09.245