First insights into the diversity and functional properties of chitinases of the latex of Calotropis procera

Plant Physiology and Biochemistry - Tập 108 - Trang 361-371 - 2016
Cleverson D.T. Freitas1, Carolina A. Viana1, Ilka M. Vasconcelos1, Frederico B.B. Moreno2, José V. Lima-Filho3, Hermogenes D. Oliveira1, Renato A. Moreira2, Ana Cristina O. Monteiro-Moreira2, Márcio V. Ramos1
1Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, CE CEP 60451-970, Brazil
2Centro de Ciências da Saúde, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
3Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

Tài liệu tham khảo

Agrawal, 2009, Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory, Annu. Rev. Ecol. Evol. Syst., 40, 311, 10.1146/annurev.ecolsys.110308.120307 Azarkan, 1997, Carica papaya latex is a rich source of a class II chitinase, Phytochemistry, 46, 1319, 10.1016/S0031-9422(97)00469-X Boller, 1992, vol. II Bradford, 1976, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Cavalcante, 2016, A panel of glycoproteins as candidate biomarkers for early diagnosis and treatment evaluation of B-cell acute lymphoblastic eukemia, Biomark. Res., 4, 1, 10.1186/s40364-016-0055-6 Domsalla, 2008, Occurrence and properties of proteases in plant latices, Planta Med., 74, 699, 10.1055/s-2008-1074530 Freitas, 2007, Enzymatic activities and protein profile of latex from Calotropis procera, Plant Physiol. Biochem., 45, 781, 10.1016/j.plaphy.2007.07.020 Freitas, 2011, Osmotin purified from the latex of Calotropis procera: biochemical characterization, biological activity and role in plant defense, Plant Physiol. Biochem., 49, 738, 10.1016/j.plaphy.2011.01.027 Freitas, 2011, Osmotin from Calotropis procera latex: new insights into structure and antifungal properties, Biochim. Biophys. Acta, 1808, 2501, 10.1016/j.bbamem.2011.07.014 Freitas, 2016, Proteomic analysis and purification of an unusual germin-like protein with proteolytic activity in the latex of Thevetia peruviana, Planta, 243, 1115, 10.1007/s00425-016-2468-8 Hagel, 2008, Got milk? the secret life of laticifers, Trends Plant Sci., 13, 631, 10.1016/j.tplants.2008.09.005 Hamid, 2013, Chitinases: an update, J. Pharm. Bioallied. Sci., 5, 21, 10.4103/0975-7406.106559 Hellman, 1995, Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing, Anal. Biochem., 224, 451, 10.1006/abio.1995.1070 Kitajima, 2010, Two chitinase-like proteins abundantly accumulated in latex of mulberry show insecticidal activity, BMC Biochem., 11, 1 Konno, 2011, Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein, Phytochemistry, 72, 1510, 10.1016/j.phytochem.2011.02.016 Laemmli, 1970, Cleavage of structural proteins during the assembly of the bacteriophage T4, Nature, 227, 680, 10.1038/227680a0 Latgé, 2007, The cell wall: a carbohydrate armour for the fungal cell, Mol. Microbiol., 66, 279, 10.1111/j.1365-2958.2007.05872.x Lewinsohn, 1991, The geographical distribution of plant latex, Chemoecology, 2, 64, 10.1007/BF01240668 Martin, 1991, The latex of Hevea brasiliensis contains high levels of both chitinases and chitinases/lysozymes, Plant Physiol., 95, 469, 10.1104/pp.95.2.469 Masuko, 2005, Carbohydrate analysis by a phenol-sulfuric acid method in microplate format, Anal. Biochem., 339, 69, 10.1016/j.ab.2004.12.001 Mezhlumyan, 2003, Proteinases from Carica papaya latex, Chem. Nat. Compd., 39, 171, 10.1023/A:1025466030937 Molano, 1977, A rapid and sensitive assay for chitinase using tritiated chitin, Anal. Biochem., 83, 648, 10.1016/0003-2697(77)90069-0 Patel, 2009, ICChI, a glycosylated chitinase from the latex of Ipomoea carnea, Phytochemistry, 70, 1210, 10.1016/j.phytochem.2009.07.005 Quan, 2008, Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network, J. Integr. Plant Biol., 50, 2, 10.1111/j.1744-7909.2007.00599.x Ramos, 2006, Latex constituents from Calotropis procera (R. Br.) display toxicity upon egg hatching and larvae of Aedes aegypti (Linn.), Mem. I. Oswaldo Cruz, 1001, 503, 10.1590/S0074-02762006000500004 Ramos, 2007, Performance of distinct crop pests reared on diets enriched with latex proteins from Calotropis procera: role of laticifer proteins in plant defense, Plant Sci., 173, 349, 10.1016/j.plantsci.2007.06.008 Ramos, 2010, The defensive role of latex in plants: detrimental effects on insects, Arthropod Plant Interact., 4, 57, 10.1007/s11829-010-9084-5 Ramos, 2013, New insights into the complex mixture of latex cysteine peptidases in Calotropis procera, Int. J. Biol. Macromol., 58, 211, 10.1016/j.ijbiomac.2013.04.001 Ramos, 2014, A phytopathogenic cysteine peptidase from latex of wild rubber vine Cryptostegia grandiflora, Protein J., 33, 199, 10.1007/s10930-014-9551-4 Ramos, 2015, Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: insights into the mechanism of action, Phytochemistry, 119, 5, 10.1016/j.phytochem.2015.09.012 Segrest, 1972, Complex carbohydrates Part B, Meth. Enzymol., 28, 54, 10.1016/0076-6879(72)28007-7 Souza, 2011, Laticifer proteins play a defensive role against hemibiotrophic and necrotrophic phytopathogens, Planta, 234, 183, 10.1007/s00425-011-1392-1 Spanò, 2015, Chitinase iii in Euphorbia characias latex: purification and characterization. Protein expres, Purif, 116, 152, 10.1016/j.pep.2015.08.026 Sytwala, 2015, Lysozyme- and chitinase activity in latex bearing plants of genus Euphorbia: a contribution to plant defense mechanism, Plant Physiol. Biochem., 95, 35, 10.1016/j.plaphy.2015.07.004 Taira, 2005, Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength, Biosci. Biotechnol. Biochem., 69, 811, 10.1271/bbb.69.811 van Loon, 2006, Significance of inducible defense-related proteins in infected plants, Annu. Rev. Phytopathol., 44, 135, 10.1146/annurev.phyto.44.070505.143425 Wang, 2001, Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control, Arch. Insect Biochem., 47, 110, 10.1002/arch.1041 Yan, 2008, In vitro antifungal activity and mechanism of action of chitinase against four plant pathogenic fungi, J. Basic Microbiol., 48, 293, 10.1002/jobm.200700392