Surface Plasmon Polariton Emission Prompted by Organic Nanofibers on Thin Gold Films
Tóm tắt
The excitation of surface plasmon polaritons (SPP) at a gold–vacuum interface by femtosecond light pulses mediated by organic nanofiber-induced dielectric perturbations is observed using interferometric time-resolved photoemission electron microscopy. The experimental data are quantitatively reproduced by analytic simulations, where the nanofibers are considered as superior source of the SPP emission. The flexibility and tuneability of phenylene-based nanofibers in their morphology and intrinsic optical properties open up future applications to fabricate custom-designed nanoscale sources of SPP.
Tài liệu tham khảo
Maier S, Brongersma M, Kik P, Meltzer S, Requicha A, Atwater H (2001) Plasmonics-a route to nanoscale optical devices. Adv Mater 13(19):1501–1505. doi:10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
Barnes W, Dereux A, Ebbesen T (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. doi:10.1038/nature01937
Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193. doi:10.1126/science.1114849
Pyayt AL, Wiley B, Xia Y, Chen A, Dalton L (2008) Integration of photonic and silver nanowire plasmonic waveguides. Nat Nano 3(11):660–665
Hill RT, Mock JJ, Urzhumov Y, Sebba DS, Oldenburg SJ, Chen SY, Lazarides AA, Chilkoti A, Smith DR (2010) Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett 10(10):4150–4154. doi:10.1021/nl102443p
Ohtsu M, Kobayashi K, Kawazoe T, Sangu S, Yatsui T (2002) Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quantum Electron 8(4):839–862. doi:10.1109/JSTQE.2002.801738
Kretschmann E (1972) The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness. Opt Commun 5(5):331–336. doi:10.1016/0030-4018(72)90026-0
Heitmann D (1977) Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces. J Phys C Solid State Phys 10(3):397. doi:10.1088/0022-3719/10/3/010
Maier SA (2007) Plasmonics: fundamentals and applications. Springer
Ditlbacher H, Krenn JR, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg FR (2002) Fluorescence imaging of surface plasmon fields. Appl Phys Lett 80(3):404–406. doi:10.1063/1.1435410
Schiek M, Balzer F, Al-Shamery K, Lutzen A, Rubahn HG (2008) Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes. Soft Matter 4(2):277–285. doi:10.1039/b713295f
Balzer F, Bordo VG, Simonsen AC, Rubahn HG (2003) Optical waveguiding in individual nanometerscale organic fibers. Phys Rev B 67(11):115408. doi:10.1103/PhysRevB.67.115408
Radko IP, Fiutowski J, Tavares L, Rubahn HG, Bozhevolnyi SI (2011) Organic nanofiber-loaded surface plasmon-polariton waveguides. Opt Express 19(16):15155–15161. doi:10.1364/OE.19.015155
Kubo A, Onda K, Petek H, Sun Z, Jung YS, Kim HK (2005) Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett 5(6):1123. doi:10.1021/nl0506655
Bauer M, Wiemann C, Lange J, Bayer D, Rohmer M, Aeschlimann M (2007) Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy. Appl Phys A: Mater Sci Process 88(3):473–480. doi:10.1007/s00339-007-4056-z
Meyer zu Heringdorf F, Chelaru L, Möllenbeck S, Thien D, Horn-von Hoegen M (2007) Femtosecond photoemission microscopy. Surf Sci 601(20):4700–4705
Swiech W, Fecher G, Ziethen C, Schmidt O, Schönhense G, Grzelakowski K, Schneider CM, Frömter R, Oepen H, Kirschner J (1997) Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity. J Electron Spectrosc Relat Phenom 84(1–3):171–188. doi:10.1016/S0368-2048(97)00022-4
Schmidt O, Bauer M, Wiemann C, Porath R, Scharte M, Andreyev O, Schönhense G, Aeschlimann M (2002) Time-resolved two photon photoemission electron microscopy. Appl Phys B: Lasers Optics 74:223–227. doi:10.1007/s003400200803
Douillard L, Charra F, Korczak Z, Bachelot R, Kostcheev S, Lerondel G, Adam PM, Royer P (2008) Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett 8(3):935–940. doi:10.1021/nl080053v
Cinchetti M, Gloskovskii A, Nepjiko SA, Schönhense G, Rochholz H, Kreiter M (2005) Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys Rev Lett 95:047601. doi:10.1103/PhysRevLett.95.047601
Wehner M, Ulm M, Wegener M (1997) Scanning interferometer stabilized by use of pancharatnam’s phase. Opt Lett 22(19):1455–1457. doi:10.1364/OL.22.001455
Balzer F, Rubahn H (2009) Dipole-assisted self-assembly of light-emitting p-np needles on mica. Appl Phys Lett 79(23):3860–3862. doi:10.1063/1.1424071
Kubo A, Pontius N, Petek H (2007) Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7(2):470–475. doi:10.1021/nl0627846
Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. doi:10.1103/PhysRevB.6.4370
Lamprecht B, Krenn JR, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg FR, Weeber JC (2001) Surface plasmon propagation in microscale metal stripes. Appl Phys Lett 79(1):51–53. doi:10.1063/1.1380236
Wagner T, Fritz DR, Zeppenfeld P (2011) Standing and flat lying ∝-6t molecules probed by imaging photoelectron spectroscopy. Organ Electron 12(3):442–446. doi:10.1016/j.orgel.2010.12.011
Fleming AJ, Surnev S, Netzer FP, Ramsey MG (2009) Growth and desorption kinetics of sexiphenyl needles: an in-situ afm/peem study. In: Al-Shamery K, Horowitz G, Sitter H, Rubahn HG (eds) Interface controlled organic thin films. Springer proceedings in physics, vol 129. Springer, Berlin, Heidelberg, pp 167–169. doi:10.1007/978-3-540-95930-4
Buckanie NM, Meyer zu Heringdorf FJ (2010) Nonlinear photoemission microscopy with surface plasmon polaritons. Microsc Microanal 16(Suppl 2):502–503. doi:10.1017/S1431927610057557