Estimation of slipping organ motion by registration with direction-dependent regularization

Medical Image Analysis - Tập 16 - Trang 150-159 - 2012
Alexander Schmidt-Richberg1, René Werner1, Heinz Handels1, Jan Ehrhardt1
1Institute of Medical Informatics, University of Lübeck, Lübeck, Germany

Tài liệu tham khảo

Al-Mayah, 2008, Contact surface and material nonlinearity modeling of human lungs, Phys. Med. Biol., 53, 305, 10.1088/0031-9155/53/1/022 Castillo, 2009, A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets, Phys. Med. Biol., 54, 1849, 10.1088/0031-9155/54/7/001 Chan, 2001, Active contours without edges, IEEE Trans. Image Process., 10, 266, 10.1109/83.902291 Chandrashekara, R., Mohiaddin, R.H., Razavi, R.S., Rueckert, D., 2007. Nonrigid image registration with subdivision lattices: application to cardiac mr image analysis. In: MICCAI ’07: Proceedings of the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 4791. pp. 335–342. Commowick, 2008, An efficient locally affine framework for the smooth registration of anatomical structures, Med. Image Anal., 12, 427, 10.1016/j.media.2008.01.002 Deriche, 1987, Using canny’s criteria to derive a recursively implemented optimal edge detector, Int. J. Comput. Vis., 1, 167, 10.1007/BF00123164 Ding, K., Yin, Y., Cao, K., Christensen, G.E., Lin, C.-L., Hoffman, E.A., Reinhardt, J.M., 2009. Evaluation of lobar biomechanics during respiration using image registration. In: MICCAI ’09: Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 5761. pp. 739–746. Ehrhardt, 2007, An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing, Med. Phys., 34, 711, 10.1118/1.2431245 Ehrhardt, 2010, Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration, IEEE Trans. Med. Imag., 30, 251, 10.1109/TMI.2010.2076299 Hermosillo, 2002, Variational methods for multimodal image matching, Int. J. Comput. Vis., 50, 329, 10.1023/A:1020830525823 Hu, 2001, Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images, IEEE Trans. Med. Imag., 20, 490, 10.1109/42.929615 Kabus, S., Franz, A., Fischer, B., 2006. Variational image registration with local properties. In: WBIR ’06: Proceedings of the 3rd International Workshop on Biomedical Image Registration, vol. 4057. pp. 92–100. Keall, 2006, The management of respiratory motion in radiation oncology report of AAPM task group 76, Med. Phys., 33, 3874, 10.1118/1.2349696 Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P., 2004. Nonrigid image registration using free-form deformations with a local rigidity constraint. In: MICCAI ’04: Proceedings of the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 3216. pp. 639–646. Messay, 2010, A new computationally efficient CAD system for pulmonary nodule detection in CT imagery, Med. Imag. Anal., 14, 390, 10.1016/j.media.2010.02.004 Modersitzki, 2004 Mohamed, 2006, Deformable registration of brain tumor images via a statistical model of tumor-induced deformation, Med. Imag. Anal., 10, 752, 10.1016/j.media.2006.06.005 Murphy, K., van Ginneken, B., Reinhardt, J.M., et al., 2011. Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans. Med. Imag. 30 (7). doi:10.1109/TMI.2011.2158349. Nagel, 1986, An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences, IEEE Trans. Patt. Anal. Mach. Intell., 8, 565, 10.1109/TPAMI.1986.4767833 Pitiot, 2008, Geometrical regularization of displacement fields for histological image registration, Med. Image Anal., 1, 16, 10.1016/j.media.2007.06.007 Ruan, D., Esedoglu, S., Fessler, J.A., 2009. Discriminative sliding preserving regularization in medical image registration. In: Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro. ISBI’09. pp. 430–433. Sarrut, 2007, A comparison framework for breathing motion estimation methods from 4-D imaging, IEEE Trans. Med. Imag., 26, 1636, 10.1109/TMI.2007.901006 Schmidt-Richberg, A., Ehrhardt, J., Werner, R., Handels, H., 2009a. Evaluation and comparison of force terms for the estimation of lung motion by non-linear registration of 4D-CT image data. In: World Congress on Medical Physics and Biomedical Engineering 2009. pp. 2128–2131. Schmidt-Richberg, A., Ehrhardt, J., Werner, R., Handels, H., 2009b. Slipping objects in image registration: improved motion field estimation with direction-dependent regularization. In: MICCAI ’09: Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 5761. pp. 755–762. Schmidt-Richberg, A., Ehrhardt, J., Werner, R., Handels, H., 2010. Diffeomorphic diffusion registration of lung CT images. In: Medical Image Analysis for the Clinic: A Grand Challenge, Workshop Proceedings from MICCAI 2010. pp. 55–62. Schmidt-Richberg, 2009, Integrated segmentation and non-linear registration for organ segmentation and motion field estimation in 4D CT data, Methods Inf. Med., 48, 334, 10.3414/ME9234 Sun, D., Roth, S., Lewis, J.P., Black, M.J., 2008. Learning optical flow. In: ECCV ’08: Proceedings of the 10th European Conference on Computer Vision. pp. 83–97. Thirion, 1998, Image matching as a diffusion process: an analogy with maxwell’s demons, Med. Image Anal., 2, 243, 10.1016/S1361-8415(98)80022-4 van Rikxoort, 2009, Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection, Med. Phys., 36, 2934, 10.1118/1.3147146 Vandemeulebroucke, J., Sarrut, D., Clarysse, P., 2007. Point-validated pixel-based breathing thorax model. In: ICCR ’07: Proceedings of the 15th International Conference on the Use of Computers in Radiation Therapy. Vik, T., Kabus, S., von Berg, J., et al., 2008. Validation and comparison of registration methods for free-breathing 4D lung-CT. In: Image Processing, SPIE Medical Imaging 2008, vol. 6914. p. 69142P. von Berg, J., Barschdorf, H., Blaffert, T., Kabus, S., 2007. Surface based cardiac and respiratory motion extraction for pulmonary structures from multi-phase CT. In: Image Processing, SPIE Medical Imaging 2007, vol. 6511. p. 65110Y. von Siebenthal, 2007, 4D MR imaging of respiratory organ motion and its variability, Phys. Med. Biol., 52, 1547, 10.1088/0031-9155/52/6/001 Weickert, 1998, Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Process., 7, 398, 10.1109/83.661190 Werner, 2009, Patient-specific finite element modeling of respiratory lung motion using 4D CT image data, Med. Phys., 35, 1500, 10.1118/1.3101820 Werner, R., Ehrhardt, J., Schmidt-Richberg, A., Handels, H., 2009b. Validation and comparison of a biophysical modeling approach and non-linear registration for estimation of lung motion fields in thoracic 4D CT data. In: Image Processing, SPIE Medical Imaging 2009, vol. 7259. pp. 0U1–0U8. Wu, 2008, Evaluation of deformable registration of patient lung 4dct with subanatomical region segmentations, Med. Phys., 35, 775, 10.1118/1.2828378 Xie, 2009, Tissue feature-based and segmented deformable image registration for improved modeling of shear movement of lungs, Int. J. Radiat. Oncol. Biol. Phys., 74, 1256, 10.1016/j.ijrobp.2009.02.023 Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., Seidel, H.-P., 2009. Complementary optic flow. In: EMMCVPR ’09: Proceedings of the 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition. pp. 207–220.