Microstructure and mechanical properties of TiC–TiB2 composite cermet tool materials at ambient and elevated temperature

Ceramics International - Tập 42 - Trang 2717-2723 - 2016
Limei Wang1,2,3, Hanlian Liu1,2, Chuanzhen Huang1,2, Xuefei Liu1,2, Bin Zou1,2, Bin Zhao1,2
1Centre for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, China
2Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, China
3School of Mechanical Engineering, Shandong Yingcai University, Jinan 250104, China

Tài liệu tham khảo

Bhaumik, 2000, Synthesis and sintering of TiB2 and TiB2–TiC composite under high press, Mater. Sci. Eng. A, 279, 275, 10.1016/S0921-5093(99)00217-8 Lee, 2002, Dense nanocrystalline TiB2–TiC composites formed by field activation from high-energy ball milled reactants, Mater. Sci. Eng. A, 325, 221, 10.1016/S0921-5093(01)01451-4 Li, 2006, Preparation of directionally solid filed TiB2–TiC eutectic composites by a floating zone method, Mater. Lett., 60, 839, 10.1016/j.matlet.2005.10.028 Gutmanas, 1999, Dense high temperature ceramics by thermal explosion under pressure, J. Eur. Ceram. Soc., 19, 2381, 10.1016/S0955-2219(99)00104-1 Gutmanas, 2000, Reactive synthesis of ceramic composites under pressure, Ceram. Int., 26, 699, 10.1016/S0272-8842(00)00007-9 Zhu, 1999, In-situ HIP synthesis of TiB2/SiC ceramic composites, J. Mater. Process. Tech., 89–90, 457 Kang, 1990, Improvements in mechanical properties of TiB2 by the dispersion of B4C particles, J. Mater. Sci., 25, 580, 10.1007/BF00714078 Darren, 1995, Consolidation of combustion-synthesized titanium diboride-based materials, J. Am. Ceram. Soc., 78, 375 Li, 2002, Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid, J. Eur. Ceram. Soc., 22, 973, 10.1016/S0955-2219(01)00403-4 Song, 2014, Effects of TiC content and melt phase on microstructure and mechanical properties of ternary TiB2-based ceramic cutting tool materials, Mater. Sci. Eng. A, 605, 137, 10.1016/j.msea.2014.03.036 Zou, 2012, Mechanical properties and microstructure of TiB2–TiC composite ceramic cutting tool material, Int. J. Refract. Met. Hard Mater., 35, 1, 10.1016/j.ijrmhm.2012.02.011 Huang, 1995, The characteristics of the cutting force and temperature when machining nickel-base alloys, Tool Eng., 29, 35 Bao, 2000, Creep of stress ageing of Al2O3/SiC multiphase ceramics at high temperature, J. Chin. Ceram. Soc., 28, 348 Zhao, 2014, Microstructure and mechanical properties of hot pressed TiB2–SiC composite ceramic tool materials at room and elevated temperatures, Mater. Sci. Eng. A, 606, 108, 10.1016/j.msea.2014.03.084 Gong, 2006, Thermodynamic research on refractory molybdenum alloy liquid phase sintering, Min. Metall. Eng., 26, 65 Kim, 2007, High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride, Acta Mater., 55, 727, 10.1016/j.actamat.2006.08.059 Boniecki, 2012, Fracture toughness, strength and creep of transparent ceramics at high temperature, Ceram. Int., 38, 4517, 10.1016/j.ceramint.2012.02.028 Zou, 2012, High-temperature bending strength, internal friction and stiffness of ZrB2–20vol% SiC ceramics, J. Eur. Ceram. Soc., 32, 2519, 10.1016/j.jeurceramsoc.2012.01.035 Kondo, 2003, High-temperature mechanical properties of sinter-forged silicon nitride with ytterbia additive, J. Eur. Ceram. Soc., 23, 809, 10.1016/S0955-2219(02)00189-9 Zhu, 2004, Study on the oxidation behavior of the TiC–TiB2 ceramic, Mater. Sci. Technol., 12, 57 Yang, 2012, Oxidation behavior and kinetics of in situ (TiB2+TiC)/Ti3SiC2 composites in air, Ceram. Int., 38, 159, 10.1016/j.ceramint.2011.05.156