A Process for Capturing CO2 from the Atmosphere

Joule - Tập 2 - Trang 1573-1594 - 2018
David W. Keith1,2,3, Geoffrey Holmes3, David St. Angelo3, Kenton Heidel3
1Harvard School of Engineering and Applied Sciences, 12 Oxford Street, Cambridge, MA 02138, USA
2Harvard Kennedy School, 79 John F. Kennedy Street, Cambridge, MA, 02138, USA
3Carbon Engineering, 37321 Galbraith Road, Squamish, BC V8B 0A2, Canada

Tài liệu tham khảo

Beller, 1965, Liquid-fuel synthesis using nuclear power in a mobile energy depot system, Trans. Am. Nucl. Soc., 8 Lackner, 1999 Lackner, 2016, The promise of negative emissions, Science, 354, 714, 10.1126/science.aal2432 Socolow, 2011 House, 2011, Economic and energetic analysis of capturing CO2 from ambient air, Proc. Natl. Acad. Sci. USA, 108, 20428, 10.1073/pnas.1012253108 Lackner, 2012, The urgency of the development of CO2 capture from ambient air, Proc. Natl. Acad. Sci. USA, 109, 13156, 10.1073/pnas.1108765109 Martin, 2018 Sanz-Pérez, 2016, Direct capture of CO2 from ambient air, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173 Herzog, 2003 Brandani, 2012, Carbon dioxide capture from air: a simple analysis, Energy Environ., 23, 319, 10.1260/0958-305X.23.2-3.319 Wilcox, 2017, Assessment of reasonable opportunities for direct air capture, Environ. Res. Lett., 12, 065001, 10.1088/1748-9326/aa6de5 Pielke, 2009, An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy, Environ. Sci. Policy, 12, 216, 10.1016/j.envsci.2009.01.002 Ranjan, 2010 Mazzotti, 2013, Direct air capture of CO2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air-liquid contactor, Clim. Change, 118, 119, 10.1007/s10584-012-0679-y Stolaroff, 2008, Carbon dioxide capture from atmospheric air using sodium hydroxide spray, Environ. Sci. Technol., 42, 2728, 10.1021/es702607w Zeman, 2014, Reducing the cost of Ca-based direct air capture of CO2, Environ. Sci. Technol., 48, 11730, 10.1021/es502887y Mahmoudkhani, 2009, Low energy packed tower and caustic recovery for direct capture of CO2 from air, Energy Procedia, 1, 1535, 10.1016/j.egypro.2009.01.201 Burhenne, 2017, Characterization of reactive CaCO3 crystallization in a fluidized bed reactor as a central process of direct air capture, J. Environ. Chem. Eng., 5, 5968 Keith, 2010, Capturing CO2 from the atmosphere: rationale and process design considerations, 107 Wang, 2011, Moisture swing sorbent for carbon dioxide capture from ambient air, Environ. Sci. Technol., 45, 6670, 10.1021/es201180v Lackner, 2009, Capture of carbon dioxide from ambient air, Eur. Phys. J. Spec. Top., 176, 93, 10.1140/epjst/e2009-01150-3 Zeman, 2004, Capturing carbon dioxide directly from the atmosphere, World Resour. Rev., 16, 157 Holmes, 2012, An air-liquid contactor for large-scale capture of CO2 from air, Philos. Trans. A Math. Phys. Eng. Sci., 370, 4380 Rickover, H. (1953). Letter. Available at: http://ecolo.org/documents/documents_in_english/Rickover.pdf. Accessed 10 January, 2018. Baciocchi, 2006, Process design and energy requirements for the capture of carbon dioxide from air, Chem. Eng. Process. Process Intensif., 45, 1047, 10.1016/j.cep.2006.03.015 Heidel, K.R., Ritchie, J.A., Kainth, A.P.S., and Keith, D.W. (2014). United States Patent: 8728428-Recovering a caustic solution via calcium carbonate crystal aggregates. Filed March 13, 2013, and issued May 20, 2014. Heidel, K.R., Keith, D.W., Ritchie, J.A., Vollendorf, N., and Fessler, E. (2017). United States Patent: 9637393-Recovering a caustic solution via calcium carbonate crystal aggregates. Filed May 19, 2014, and issued May 2, 2017. Holmes, 2010 Tepe, 1943, Absorption of carbon dioxide by sodium hydroxide solutions in a packed column, Trans. Am. Inst. Chem. Eng., 39, 255 Spector, 1946, Removal of carbon dioxide from atmospheric air, Trans. Am. Inst. Chem. Eng., 42, 827 Danckwerts, 1963, Kinetics of CO2 absorption in alkaline solutions—II: absorption in a packed column and tests of surface-renewal models, Chem. Eng. Sci., 18, 63, 10.1016/0009-2509(63)80015-9 Astarita, 1966, Regimes of mass transfer with chemical reaction, Ind. Eng. Chem., 58, 18, 10.1021/ie50680a006 Zeman, 2007, Energy and material balance of CO2 capture from ambient air, Environ. Sci. Technol., 41, 7558, 10.1021/es070874m Keith, D., Mahmoudkhani, M., Biglioli, A., Hart, B., Heidel, K., and Foniok, M. (2015). United States Patent: 9095813. Carbon dioxide capture method and facility. Filed August 21, 2009, and issued August 4, 2015. Faust, 1998 Lassiter, 2013 Pröll, 2009, Cold flow model study on a dual circulating fluidized bed (DCFB) system for chemical looping processes, Chem. Eng. Technol., 32, 418, 10.1002/ceat.200800521 Heidel, K.R. and Rossi, R.A.. United States Patent application: 0170327421. High Temperature Hydrator (A1). Filed May 10, 2017, and issued A1. Zeman, 2008, Carbon neutral hydrocarbons, Philos. Trans. A Math. Phys. Eng. Sci., 366, 3901 Holmes, 2013, Outdoor prototype results for direct atmospheric capture of carbon dioxide, Energy Procedia, 6079, 10.1016/j.egypro.2013.06.537 CDC - NIOSH pocket guide to chemical hazards—potassium hydroxide. Available at: https://www.cdc.gov/niosh/npg/npgd0523.html. Gebald, 2013, Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO 2 capture from air, Environ. Sci. Technol., 47, 10063, 10.1021/es401731p KBR. Front end loading process. Available at: https://www.kbr.com/Documents/Onshore%20Refining%20Handouts/FrontEndLoadingProcessAndDeliverables_final.pdf. Rubin, 2013, A proposed methodology for CO2 capture and storage cost estimates, Int. J. Greenh. Gas Control, 17, 488, 10.1016/j.ijggc.2013.06.004 Smith, 2016, Biophysical and economic limits to negative CO2 emissions, Nat. Clim. Change, 6, 42, 10.1038/nclimate2870 Pohorecki, 1988, Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions, Chem. Eng. Sci., 43, 1677, 10.1016/0009-2509(88)85159-5 Ang, 2016, Carbon emission intensity in electricity production: a global analysis, Energy Policy, 94, 56, 10.1016/j.enpol.2016.03.038 CMU. US Power Sector Emissions. CMU Power Sector Carbon Index (2018). Available at: https://emissionsindex.org/. Carnegie Mellon University Green Design Institute. Economic Input-Output Life Cycle Assessment (EIO-LCA), US 1997 Industry Benchmark model. (2008). Available at: http://www.eiolca.net/. Henderson, M.A., Keith, D.W., Kainth, A.P.S., Heidel,K.R., and Ritchie, J.A. (2014). United States Patent: 8871008. Target gas capture. Filed September 7, 2012, and issued October 28,2014.