An axiomatic construction of an almost full embedding of the category of graphs into the category of -objects

Journal of Pure and Applied Algebra - Tập 218 - Trang 208-217 - 2014
Rüdiger Göbel1, Adam J. Przeździecki2
1Fakultät für Mathematik, Universität Duisburg–Essen, Campus Essen, 45117 Essen, Germany
2The Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences–SGGW, ul. Nowoursynowska 159, 02-776 Warszawa, Poland

Tài liệu tham khảo

Adámek, 1994, vol. 189 Butler, 1968, On locally free torsion-free rings of finite rank, J. Lond. Math. Soc., 43, 297, 10.1112/jlms/s1-43.1.297 Corner, 1963, Every countable reduced torsion-free ring is an endomorphism ring, Proc. Lond. Math. Soc., 13, 687, 10.1112/plms/s3-13.1.687 Corner, 1985, Prescribing endomorphism algebras—a unified treatment, Proc. Lond. Math. Soc. (3), 50, 447, 10.1112/plms/s3-50.3.447 Droste, 2008, Absolute graphs with prescribed endomorphism monoid, Semigroup Forum, 76, 256, 10.1007/s00233-007-9029-1 Fried, 1977, Homomorphisms of integral domains of characteristic zero, Trans. Amer. Math. Soc., 225, 163, 10.1090/S0002-9947-1977-0422382-9 Fuchs, 19701973 Fuchs, 2008, Modules with absolute endomorphism rings, Israel J. Math., 167, 91, 10.1007/s11856-008-1042-x Göbel, 2014, Prescribing endomorphism algebras of ℵn-free modules, J. Eur. Math. Soc., 10.4171/JEMS/475 Göbel, 1990, Four submodules suffice for realizing algebras over commutative rings, J. Pure Appl. Algebra, 65, 29, 10.1016/0022-4049(90)90098-3 Göbel, 1997, Endomorphism algebras of peak I-spaces over posets of infinite prinjective type, Trans. Amer. Math. Soc., 349, 3535, 10.1090/S0002-9947-97-01574-2 Göbel, 2007, Absolutely indecomposable modules, Proc. Amer. Math. Soc., 135, 1641, 10.1090/S0002-9939-07-08725-4 Göbel, 2012, vol. 41 Hedrlín, 1969, How comprehensive is the category of semigroups?, J. Algebra, 11, 195, 10.1016/0021-8693(69)90054-4 D. Herden, ℵk-Free Structures, Habilitation Thesis, Duisburg-Essen, 2013. Jech, 2002 Koubek, 1974, Each concrete category has a representation by T2 paracompact topological spaces, Comment. Math. Univ. Carolin., 15, 655 Mitchell, 1965, vol. XVII Przeździecki, 2010, An almost full embedding of the category of graphs into the category of groups, Adv. Math., 225, 1893, 10.1016/j.aim.2010.04.015 Przeździecki Pultr, 1980 Ringel, 1975, QF-3-rings, J. Reine Angew. Math., 272, 49 Shelah, 1982, Better quasi-orders for uncountable cardinals, Israel J. Math., 42, 177, 10.1007/BF02802723 Simson, 1974, Functor categories in which every flat object is projective, Bull. Acad. Pol. Ser. Math., 22, 375 Trnková, 1972, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolin., 13, 283 Zassenhaus, 1967, Orders as endomorphism rings of modules of the same rank, J. Lond. Math. Soc., 42, 180, 10.1112/jlms/s1-42.1.180