Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy

Geochimica et Cosmochimica Acta - Tập 72 - Trang 4699-4711 - 2008
Benjamin C. Gill1, Timothy W. Lyons1, Tracy D. Frank2
1Department of Earth Sciences, University of California-Riverside, Riverside, CA 92521 USA
2University of Nebraska-Lincoln, Lincoln, USA

Tài liệu tham khảo

Allan, 1977, Carbon and oxygen isotopes as diagenetic and stratigraphic tools: surface and subsurface data, Barbados, West Indies, Geology, 16, 10.1130/0091-7613(1977)5<16:CAOIAD>2.0.CO;2 Allan, 1982, Isotope signatures associated with early meteoric diagenesis, Sedimentology, 29, 797, 10.1111/j.1365-3091.1982.tb00085.x Boudreau, 1984, The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments, Geochim. Cosmochim. Acta, 48, 2503, 10.1016/0016-7037(84)90301-6 Brand, 1980, Chemical diagenesis of a multicomponent carbonate system. 1: Trace elements, J. Sediment. Res., 50, 1219 Brand, 1981, Chemical diagenesis of a multicomponent carbonate system. 2: Stable isotopes, J. Sediment. Res., 51, 987 Budd, 1988, Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: insights from pore-water chemistry, Geol. Soc. Am. Bull., 1260, 10.1130/0016-7606(1988)100<1260:ATCTDF>2.3.CO;2 Budd, 1990, Geochemical imprint of meteoric diagenesis in Holocene ooid sands, Schooner Cays, Bahamas: correlation of calcite cement geochemistry with extant groundwaters, J. Sediment. Res., 60, 361 Burdett, 1989, A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils, Earth Planet. Sci. Lett., 94, 189, 10.1016/0012-821X(89)90138-6 Canfield, 2001, Isotope fractionation by natural populations of sulfate-reducing bacteria, Geochim. Cosmochim. Acta, 65, 1117, 10.1016/S0016-7037(00)00584-6 Cross, 1983, U, Sr, and Mg in Holocene and Pleistocene corals A. palmata and M. annularis, J. Sediment. Res., 53, 587 Detmers, 2001, Diversity of sulfur isotope fractionation by sulfate-reducing prokaryotes, Appl. Environ. Microbiol., 67, 888, 10.1128/AEM.67.2.888-894.2001 Fairbanks, 1979, Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastrea annularis, Geochim. Cosmochim. Acta, 43, 1009, 10.1016/0016-7037(79)90090-5 Fike, 2008, A paired sulfate–pyrite δ34S approach to understanding the evolution of the Ediacaran–Cambrian sulfur cycle, Geochim. Cosmochim. Acta, 72, 2636, 10.1016/j.gca.2008.03.021 Fike, 2006, Oxidation of the Ediacaran Ocean, Nature, 444, 744, 10.1038/nature05345 Gavish, 1969, Progressive diagenesis in Quaternary to late Tertiary carbonate sediments; sequence and time scale, J. Sediment. Res., 39, 980 Gellatly, 2005, Trace sulfate in mid-Proterozoic carbonates and sulfur isotope record of biospheric evolution, Geochim. Cosmochim. Acta, 69, 3813, 10.1016/j.gca.2005.01.019 Gill, 2007, Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir, Palaeogeogr. Palaeoclimatol. Palaeoecol., 256, 156, 10.1016/j.palaeo.2007.02.030 Ginsburg R. N. (1953) Lithification and Alteration Processes in South Florida Carbonate Deposits. Ph.D. Thesis, University of Chicago. Goreau, 1977, Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis, Proc. R. Soc. London B, 196, 291, 10.1098/rspb.1977.0042 Gross, 1964, Variations in the O18/O16 and C13/C12 ratios of diagenetically altered limestones in the Bermuda Islands, J. Geol., 72, 170, 10.1086/626975 Habicht, 1997, Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments, Geochim. Cosmochim. Acta, 61, 5351, 10.1016/S0016-7037(97)00311-6 Habicht, 2002, Calibration of sulfate levels in the Archean Ocean, Science, 298, 2372, 10.1126/science.1078265 Harrison, 1957, Mechanism of the bacterial reduction of sulphate from isotope fractionation studies, T. Faraday Soc., 54, 84, 10.1039/tf9585400084 Harvey J. W., Krupa S. L., Gefvert C., Mooney R. H., Choi J., King S. A. and Giddings J. B. (2002) Interactions between surface water and ground water and the effects on mercury transport in the North-central Everglades. U.S. Geological Survey Water-Resources Investigation Report 02-4050, p. 82. Heikoop, 2000, Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons, Geochim. Cosmochim. Acta, 64, 975, 10.1016/S0016-7037(99)00363-4 Hoffmeister, 1968, Geology and origin of the Florida Keys, Geol. Soc. Am. Bull., 79, 1487, 10.1130/0016-7606(1968)79[1487:GAOOTF]2.0.CO;2 Hoffmeister, 1967, Miami Limestone of Florida and its recent Bahamian counterpart, Geol. Soc. Am. Bull., 78, 175, 10.1130/0016-7606(1967)78[175:MLOFAI]2.0.CO;2 Hurtgen, 2002, The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth?, Earth Planet. Sci. Lett., 203, 413, 10.1016/S0012-821X(02)00804-X Hurtgen M. T., Arthur M. A. and Prave A. R. (2004) The sulfur isotope composition of carbonate-associated sulfate in Mesoproterozoic to Neoproterozoic carbonates from Death Valley, California. In Sulfur Biogeochemistry—Past and Present (eds. J. P. Amend, K. J. Edwards and T. W. Lyons). Geol. Soc. Am. Spec. Paper 379, pp. 177–194. James, 1984, Diagenesis 9-Limestones-The meteoric diagenetic environment, Geosci. Can., 10, 162 Jian, 1997, Meteoric diagenesis in Pleistocene reef limestones of Xisha Islands, China, J. Asian Earth Sci., 15, 465, 10.1016/S0743-9547(97)00049-4 Kah, 2004, Low marine sulphate and protracted oxygenation of the Proterozoic biosphere, Nature, 431, 834, 10.1038/nature02974 Kampschulte, 2004, The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates, Chem. Geol., 204, 255, 10.1016/j.chemgeo.2003.11.013 Kampschulte, 2001, The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: implications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy, Chem. Geol., 175, 149, 10.1016/S0009-2541(00)00367-3 Kemp, 1968, The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies, Geochim. Cosmochim. Acta, 32, 71, 10.1016/0016-7037(68)90088-4 Kinsman, 1969, Interpretation of Sr+2 concentrations in carbonate minerals and rocks, J. Sediment. Petrol., 39, 486 Kump, 1986, Modeling atmospheric O2 in the global sedimentary redox cycle, Am. J. Sci., 268, 337, 10.2475/ajs.286.5.337 Kurtz, 2003, Early Cenozoic decoupling of the global carbon and sulfur cycles, Paleoceanography, 18, 1090, 10.1029/2003PA000908 Land, 1973, Holocene meteoric dolomitization of Pleistocene limestones, North Jamaica, Sedimentology, 20, 411, 10.1111/j.1365-3091.1973.tb01619.x Land, 1986, Limestone diagenesis—some geochemical considerations, US Geol. Surv. Bull., 1578, 129 Land, 1973, Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions, J. Sediment. Res., 43, 614 Land, 1975, Extension rate: a primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons, Mar. Biol., 33, 221, 10.1007/BF00390926 Leder, 1991, The effect of prolonged “bleaching” on skeletal banding and stable isotopic composition in Montastrea annularis, Coral Reefs, 10, 19, 10.1007/BF00301902 Lohmann, 1988, Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst, 58 Lyons T. W., Walter L. M., Gellatly A. M., Martini A. M. and Blake R. E. (2004) Sites of anomalous organic remineralization in the carbonate sediments of South Florida, USA: the sulfur cycle and carbonate-associated sulfate. In Sulfur Biogeochemistry—Past and Present (eds. J. P. Amend, K. J. Edwards and T. W. Lyons). Geol. Soc. Am. Spec. Paper 379, pp. 161–176. Marenco, 2008, Environmental and diagenetic variations in carbonate-associated sulfate: an investigation of CAS in the Lower Triassic of the western USA, Geochim. Cosmochim. Acta, 72, 1570, 10.1016/j.gca.2007.10.033 Martin, 1986, The role of skeletal porosity in aragonite neomorphism-Strombus and Montastrea from the Pleistocene Key Largo Limestone, Florida, J. Sediment. Petrol., 56, 194 McClain, 1992, The hydrogeochemistry of early meteoric diagenesis in a Holocene deposit of biogenic carbonates, J. Sediment. Res., 62, 1008 McGregor, 2003, Diagenesis and geochemistry of Porites corals from Papua New Guinea: implications for paleoclimate reconstruction, Geochim. Cosmochim. Acta, 67, 2147, 10.1016/S0016-7037(02)01050-5 Multer, 2002, Key Largo Limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA, Facies, 46, 229, 10.1007/BF02668083 Newton, 2004, Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy, Earth Planet. Sci. Lett., 218, 331, 10.1016/S0012-821X(03)00676-9 Paytan, 1998, Sulfur isotopic composition of Cenozoic seawater sulfate, Science, 282, 1459, 10.1126/science.282.5393.1459 Pingitore, 1976, Vadose and phreatic diagenesis: processes, products and their recognition in corals, J. Sediment. Res., 46, 985 Pingitore, 1982, The role of diffusion during carbonate diagenesis, J. Sediment. Res., 52, 27 Pingitore, 1995, Identification of sulfate in natural carbonates by X-ray absorption spectroscopy, Geochim. Cosmochim. Acta, 59, 2477, 10.1016/0016-7037(95)00142-5 Quinn, 1991, Meteoric diagenesis of Plio-Pleistocene limestones at Enewetak Atoll, J. Sediment. Res., 61, 681 Riccardi, 2006, Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction, Geochim. Cosmochim. Acta, 70, 5740, 10.1016/j.gca.2006.08.005 Saller, 1989, Meteoric diagenesis, marine diagenesis, and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands, Sediment. Geol., 63, 253, 10.1016/0037-0738(89)90135-8 Saller, 1991, Geochemistry of meteoric calcite cements in some Pleistocene limestones, Sedimentology, 38, 601, 10.1111/j.1365-3091.1991.tb01011.x Staudt, 1995, Sulfate incorporation into sedimentary carbonates, ACS Symp. Ser., 612, 332, 10.1021/bk-1995-0612.ch018 Swancar A. and Hutchinson C. B. (1995) Chemical and Isotopic Composition and Potential for Contamination of Water in the Upper Floridan Aquifer, West-Central Florida, 1986–89. US Geological Survey Water-Supply Paper 2409, p. 88. Swart, 2005, The nature of the δ13C of periplatform sediments: implications for stratigraphy and the global carbon cycle, Sediment. Geol., 175, 115, 10.1016/j.sedgeo.2004.12.029 Swart, 1989, Controls on the oxygen and hydrogen isotopic composition of the waters of Florida Bay, USA Chem. Geol., 79, 113 Swart, 1996, The origin of variations in the isotopic record of scleractinian corals. II. Carbon, Geochim. Cosmochim. Acta, 60, 2871, 10.1016/0016-7037(96)00119-6 Takano, 1985, Geochemical implications of sulfate in sedimentary carbonates, Chem. Geol., 49, 393, 10.1016/0009-2541(85)90001-4 Whitaker, 2007, Geochemistry of meteoric diagenesis in carbonate islands of the northern Bahamas. 1: Evidence from field studies, Hydrol. Process., 21, 949, 10.1002/hyp.6532 Wilcox, 2004, Use of stable isotopes to quantify flows between the Everglades and urban areas in Miami—Dade County, Florida, J. Hydrol., 293, 1, 10.1016/j.jhydrol.2003.12.041 Wunder S. J. (1974) Diagenetic Features and Inferred Diagenetic Processes in Partially Altered Corals from the Key Largo Limestone (Pleistocene) South Florida. Masters Thesis, University of Illinois-Urbana.