Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images
Tài liệu tham khảo
Tabesh, 2007, Multifeature prostate cancer diagnosis and Gleason grading of histological images, IEEE Trans Med Imaging, 26, 1366, 10.1109/TMI.2007.898536
Beck, 2011, Systematic analysis of breast cancer morphology uncovers stromal features associated with survival, Sci Transl Med, 3, 108, 10.1126/scitranslmed.3002564
Anagnostou, 2010, Analytic variability in immunohistochemistry biomarker studies, Cancer Epidemiol Biomarkers Prev, 19, 982, 10.1158/1055-9965.EPI-10-0097
Vahadane A, Peng T, Albarqouni S, Baust M, Steiger K, Schlitter AM, et al. Structure-Preserved Color Normalization for Histological Images. International Symposium on Biomedical Imaging (ISBI): From Nano to Macro, New York, USA; April, 2015.
Khan, 2014, A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution, IEEE Trans Biomed Eng, 61, 1729, 10.1109/TBME.2014.2303294
Patel, 2005, The development of common data elements for a multi-institute prostate cancer tissue bank: The Cooperative Prostate Cancer Tissue Resource (CPCTR) experience, BMC Cancer, 5, 108, 10.1186/1471-2407-5-108
Baatz M, Schäpe A. Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G, editors. Angew. Geogr. Info. verarbeitung, Wichmann-Verlag, Heidelberg. 2000. p. 12-23.
Shamir, 2008, Wndchrm – An open source utility for biological image analysis, Source Code Biol Med, 3, 13, 10.1186/1751-0473-3-13
Lawrence, 1997, Face recognition: A convolutional neural-network approach, IEEE Trans Neural Netw, 8, 98, 10.1109/72.554195
Ciresan, 2013, Mitosis detection in breast cancer histology images with deep neural networks, Med Image Comput Comput Assist Interv, 16(Pt 2), 411
R Development Core Team
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J R Stat Soc Series B Methodol, 58, 267
Bergstra, 2011
Bautista, 2014, Color standardization in whole slide imaging using a color calibration slide, J Pathol Inform, 5, 4, 10.4103/2153-3539.126153
Reinhard, 2001, Color transfer between images, IEEE Comput Graph Appl, 21, 34, 10.1109/38.946629
Basavanhally A, Madabhushi A. EM-based segmentation-driven color standardization of digitized histopathology. SPIE Med Imaging 2013;8676.
Ruifrok, 2001, Quantification of histochemical staining by color deconvolution, Anal Quant Cytol Histol, 23, 291
Macenko, 2009, A method for normalizing histology slides for quantitative analysis, Proceeding IEEE International Symposium Biomedical Imaging, 9, 1107
Díaz, 2012, Micro-structural tissue analysis for automatic histopathological image annotation, Microsc Res Tech, 75, 343, 10.1002/jemt.21063
Xu, 2015, Sparse Nonnegative Matrix Factorization (SNMF) based color unmixing for breast histopathological image analysis, Comput Med Imaging Graph, 46(Pt 1), 20, 10.1016/j.compmedimag.2015.04.002
Monaco, 2012, Image segmentation with implicit color standardization using spatially constrained expectation maximization: Detection of nuclei, Med Image Comput Comput Assist Interv, 15(Pt 1), 365
Zarella, 2015, An optimized color transformation for the analysis of digital images of hematoxylin and eosin stained slides, J Pathol Inform, 6, 33, 10.4103/2153-3539.158910