Water in granite and pegmatite-forming melts
Tài liệu tham khảo
Audétat, 2004, Viscosity of fluids in subduction zones, Science, 303, 513, 10.1126/science.1092282
Baker, 2008, The fidelity of melt inclusions as records of melt composition, Contrib. Mineral. Petrol., 156, 377, 10.1007/s00410-008-0291-3
Balitsky, 2002, Kinetics of dissolution and state of silica in hydrothermal solutions of Na2CO3 and NaOH, and accelerated method for the quartz crystal characterization against growth rate, J. Cryst. Growth, 237–239, 828, 10.1016/S0022-0248(01)02045-0
Bartels, 2011, Viscosity of flux-rich pegmatitic melt, Contrib. Mineral. Petrol., 162, 51, 10.1007/s00410-010-0582-3
Behrens, 2006, Quantification of dissolved H2O in silicate glasses using confocal microRaman spectroscopy, Chem. Geol., 229, 96, 10.1016/j.chemgeo.2006.01.014
Blank, 1994, Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior, Rev. Mineral., 30, 157
Chabiron, 1999, Determination of water content in melt inclusions by Raman spectroscopy, Terra Nostra, 99/6
Chabiron, 2004, Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy, Contrib. Mineral. Petrol., 146, 485, 10.1007/s00410-003-0510-x
Clarke, 1992
Costi, 2009, The peralkaline tin-mineralized Madeira cryolite albite-rich granite of Pitinga, Amazonian Craton, Brazil: petrography, mineralogy and crystallization processes, Can. Mineral., 47, 1301, 10.3749/canmin.47.6.1301
Di Muro, 2005, Quantification of water content and speciation in natural silicic glasses (phonolites, dacites, rhyolites) by confocal microRaman spectrometry, Geochim. Cosmochim. Acta, 70, 2868, 10.1016/j.gca.2006.02.016
Di Muro, 2006, Influence of composition and thermal history of volcanic glasses on water content as determined by micro-Raman spectrometry, Appl. Geochem., 21, 802, 10.1016/j.apgeochem.2006.02.009
Dingwell, 1987, Melt viscosities in the system NaAlSi3O8–H2O–F2O−1, 1, 423
Frantz, 1993, An optical cell for Raman spectroscopic studies of supercritical fluids and its application to the study of water to 500°C and 2000bar, Chem. Geol., 106, 9, 10.1016/0009-2541(93)90163-D
Giordano, 2008, Viscosity of magmatic liquids: a model, EPSL, 271, 123, 10.1016/j.epsl.2008.03.038
Gmelin, 1954, Gmelins Handbuch der anorganischen Chemie, 13
Goranson, 1931, The solubility of water in granitic magmas, Am. J. Sci., 22, 481, 10.2475/ajs.s5-22.132.481
Gresens, 1967, Tectonic-hydrothermal pegmatites. I. The model, Contrib. Mineral. Petrol., 15, 345, 10.1007/BF00404201
Holtz, 1996, High-temperature Raman spectroscopy of silicate and aluminosilicate hydrous glasses: implications for water speciation, Chem. Geol., 128, 25, 10.1016/0009-2541(95)00161-1
Johannes, 1996
Kalinichev, 1993, Molecular dynamics and self-diffusion in supercritical water, Ber. Bunsen Ges. Phys. Chem., 97, 872, 10.1002/bbpc.19930970707
Kalinichev, 1995, Molecular dynamics of supercritical water: a computer simulation of vibrational spectra with the flexible BJH potential, Geochim. Cosmochim. Acta, 59, 641, 10.1016/0016-7037(94)00289-X
Klimm, 2003, Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia, Precambrian Res., 124, 327, 10.1016/S0301-9268(03)00092-5
Kotel'nikova, 2010, Immiscibility in sulfate-bearing fluid systems at high temperatures and pressures, Geochem. Int., 48, 68
Kotel'nikova, 2011, Na2CO3-bearing fluids: experimental study at 700°C and under 1, 2, and 3kbar pressure using synthetic fluid inclusions in quartz, Geol. Ore Deposits, 53, 381
Leeder, 1983, Einflüsse von Mantelprozessen auf Paragenesen in Gesteinen und Lagerstätten, 383
Leeder, 1985, Stoffliche Vorgänge der Arkogenese, Freiberg. Forschungsh., C 398, 30
Leeder, 1985, Zur Bedeutung der Liquation in Gesteins- und Lagerstättenbildung, Z. Geol. Wissen, 13, 601
London, 1992, The application of experimental petrology to the genesis and crystallization of granitic pegmatites, Can. Mineral., 30, 499
London, 2008, Pegmatites, Can Mineral, Special Publication, 10
Lukkari, 2009, Crystallization of the Kymi topaz granite stock within the Wiborg granite batholith, Finland: evidence from melt inclusions, Can. Mineral., 47, 1359, 10.3749/canmin.47.6.1359
Manning, 2004, The chemistry of subduction-zone fluids, EPSL, 223, 1, 10.1016/j.epsl.2004.04.030
McKenzie, 1985, The extraction of magma from the crust and mantle, EPSL, 74, 81, 10.1016/0012-821X(85)90168-2
McMillan, 1995, Vibrational spectroscopy of silicate liquids, Rev Mineral, 32, 247
Mercier, 2010, Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions, Geochim. Cosmochim. Acta, 74, 5641, 10.1016/j.gca.2010.06.020
Müller, 2006, Water content of granitic melts from Cornwall and Erzgebirge: a Raman spectroscopy study of melt inclusions, Eur. J. Mineral., 18, 429, 10.1127/0935-1221/2006/0018-0429
Mustart, D.A. Phase relations in the peralkaline portion of the system Na2O-Al2O3- SiO2-H2O. Dissertation, Stanford University; 1972.
Mysen, 2010, Speciation and mixing behavior of silica-saturated aqueous fluid at high temperature and pressure, Am. Mineral., 95, 1807, 10.2138/am.2010.3539
Naumov, 1979, Determination of concentration and pressure of volatiles in magmatic melts based on study of inclusions in minerals, Geochimija, 7, 997
Naumov, 2010, Average composition of igneous melts from main geodynamic settings according to investigation of melt inclusions in minerals and quenched glasses of rocks, Geochem. Int., 48, 1185, 10.1134/S0016702910120049
Nabelek, 2010, The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts, Contrib. Mineral. Petrol., 160, 313, 10.1007/s00410-009-0479-1
Niggli, 1920
Oliveira, 2009, Mesoarchean sanukitoid rocks of the Rio Maria granite-greenstone terrane, Amazonian craton, Brazil, J. South Am. Earth Sci., 27, 146, 10.1016/j.jsames.2008.07.003
Oliveira, 2010, Petrological constraints on crystallization conditions of Mesoarchean sanukitoid rocks, Southeastern Amazonian craton, Brazil, J. Petrol., 51, 2121, 10.1093/petrology/egq051
Reyf, 1990
Reyf, 2009, The conditions and mechanisms of the formation of granitic ore magma systems
Roedder, 1984, Fluid inclusions, Rev. Mineral., 12
Roedder, 2003, Significance of melt inclusions
Roozeboom, 1918, Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre. II
Schmitt, 2002, Zr–Nb–REE mineralization in peralkaline granites from the Amis Complex, Brandberg (Namibia): evidence for magmatic pre-enrichment from melt inclusions, Econ. Geol., 97, 399, 10.2113/gsecongeo.97.2.399
Schneiderhöhn, 1961
Shaw, 1972, Viscosities of magmatic silicate liquids: an empirical method of prediction, Am. J. Sci., 272, 870, 10.2475/ajs.272.9.870
Smith, 1953, Complex inclusions in pegmatite minerals, Am. Mineral., 38, 559
Severs, 2006, Experimental determination of H2O loss from melt inclusions during laboratory heating, Chem. Geol., 237, 358, 10.1016/j.chemgeo.2006.07.008
Sorby, 1858, On the microscopic structure of crystals, indicating the origin of minerals and rocks, Proceedings of the Geological Society of London Quarterly Journal, 14, 453, 10.1144/GSL.JGS.1858.014.01-02.44
Sowerby, 2002, The effect of fluorine, boron and excess sodium on the critical curve in the albite–H2O system, Contrib. Mineral. Petrol., 143, 32, 10.1007/s00410-001-0334-5
Thomas, J.B. Melt inclusion geochemistry. Unpublished dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; 2003.
Thomas, R. Untersuchungen von Einschlüssen zur thermodynamischen und physikochemischen Charakteristik lagerstättenbildender Lösungen und Prozesse im magmatischen und postmagmatischen Bereich. Bergakademie Freiberg, Dissertation A; 1979.
Thomas, R. Untersuchungen von Schmelzeinschlüssen und ihre Anwendung zur Lösung lagerstättengeologischer und petrologischer Problemstellungen. Bergakademie Freiberg, Dissertation B; 1989.
Thomas, 1994, Fluid evolution in relation to the emplacement of the Variscan granites in the Erzgebirge region: a review of the melt and fluid inclusion evidence, 70
Thomas, 1994, Estimation of water content of granitic melts from inclusion data, 224
Thomas, 1994, Estimation of the viscosity and the water content of silicate melts from melt inclusion data, Eur. J. Mineral., 6, 511, 10.1127/ejm/6/4/0511
Thomas, 2000, Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy, Am. Mineral., 85, 868, 10.2138/am-2000-5-631
Thomas, 2002, Determination of water contents in melt inclusions by laser Raman spectroscopy, 211
Thomas, 2006, Progress in the determination of water in glasses and melt inclusions with Raman spectroscopy: a short review, Z. Geol. Wiss., 34, 159
Thomas, 2007, Progress in the determination of water in glasses and melt inclusions with Raman spectroscopy: a short review, Acta Petrol. Sinica, 23, 15
Thomas, 2008, Water and melt/melt immiscibility, the essential components in the formation of pegmatites; evidence from melt inclusions, Z. Geol. Wiss., 36, 347
Thomas, 2010, Hambergite-rich melt inclusions in morganite crystals from the Muiane pegmatite, Mozambique and some remarks on the paragenesis of hambergite, Mineral. Petrol., 100, 227, 10.1007/s00710-010-0132-8
Thomas, 2009, A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems, Mineral. Petrol., 96, 129, 10.1007/s00710-009-0053-6
Thomas, 2011, Tantalite-(Mn) from the Borborema pegmatite province, northeastern Brazil: conditions of formation and melt- and fluid-inclusion constraints on experimental studies, Miner. Deposita, 46, 749, 10.1007/s00126-011-0344-9
Thomas, 2008, Ramanite-(Cs) and ramanite-(Rb): new cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy, Am. Mineral., 93, 1034, 10.2138/am.2008.2727
Thomas, 2011, Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark, Contrib. Mineral. Petrol., 161, 315, 10.1007/s00410-010-0533-z
Thomas, 2009, The miarolitic pegmatites from the Königshain: a contribution to understanding the genesis of pegmatites, Contrib. Mineral. Petrol., 157, 505, 10.1007/s00410-008-0349-2
Thomas, 2003, The behaviour of boron in a peraluminous granite–pegmatite system and associated hydrothermal solutions: a melt and fluid inclusion study, Contrib. Mineral. Petrol., 144, 457, 10.1007/s00410-002-0410-5
Thomas, 2005, Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin–granite magmas: a melt/fluid-inclusion study, Contrib. Mineral. Petrol., 148, 582, 10.1007/s00410-004-0624-9
Thomas, 1997, Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: volatile content and entrapment conditions, J. Petrol., 38, 1753, 10.1093/petrology/38.12.1753
Thomas, 2006, Laser Raman spectroscopic measurements of water in unexposed glass inclusions, Am. Mineral., 91, 467, 10.2138/am.2006.2107
Thomas, 1999, Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids?, Terra Nostra, 99/6, 305
Thomas, 2000, Strong tin enrichment in a pegmatite-forming melt, Miner. Deposita, 35, 570, 10.1007/s001260050262
Thomas, 2000, Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure, Contrib. Mineral. Petrol., 139, 394, 10.1007/s004100000120
Thomas, 2006, The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals, Lithos, 91, 137, 10.1016/j.lithos.2006.03.013
Thomas, 2011, Be-daughter minerals in fluid and melt Inclusions: implications for the enrichment of Be in granite-pegmatite systems, Contrib. Mineral. Petrol., 161, 483, 10.1007/s00410-010-0544-9
Thomas, 2008, Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets, Am. Mineral., 93, 1550, 10.2138/am.2008.2834
Turnbull, 1961, The liquid state and the liquid–solid transition, Transaction of the Metallurgical Soc. of AIME, 221, 422
Tuttle, 1958, Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O, 74
Veksler, 1998, Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave, J. Petrol., 39, 2095, 10.1093/petrology/39.11.2095
Vogel, 1959
Vogt, 1904
Walrafen, 1964, Raman spectral studies of water structure, J. Chem. Phys., 40, 3249, 10.1063/1.1724992
Walrafen, 2006, Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH, J. Chem. Phys., 124, 114504-1, 10.1063/1.2121710
Wyllie, 1959, Effect of carbon dioxide on the melting of granite and feldspar, Am. J. Sci., 257, 648, 10.2475/ajs.257.9.648
Zajacz, 2005, A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy, Contrib. Mineral. Petrol., 150, 631, 10.1007/s00410-005-0040-9
Zagorsky, 2007, Deep fluid flow–melt interaction and problems of granite–pegmatite system petrogenesis. Abstracts in Granitic pegmatites: the state of the art, Memórias Porto, 8, 106