Water in granite and pegmatite-forming melts

Ore Geology Reviews - Tập 46 - Trang 32-46 - 2012
R. Thomas1, P. Davidson2
1GeoForschungsZentrum, Potsdam, Germany
2ARC Centre of Excellence in Ore Deposits, University of Tasmania, Hobart, Australia

Tài liệu tham khảo

Audétat, 2004, Viscosity of fluids in subduction zones, Science, 303, 513, 10.1126/science.1092282 Baker, 2008, The fidelity of melt inclusions as records of melt composition, Contrib. Mineral. Petrol., 156, 377, 10.1007/s00410-008-0291-3 Balitsky, 2002, Kinetics of dissolution and state of silica in hydrothermal solutions of Na2CO3 and NaOH, and accelerated method for the quartz crystal characterization against growth rate, J. Cryst. Growth, 237–239, 828, 10.1016/S0022-0248(01)02045-0 Bartels, 2011, Viscosity of flux-rich pegmatitic melt, Contrib. Mineral. Petrol., 162, 51, 10.1007/s00410-010-0582-3 Behrens, 2006, Quantification of dissolved H2O in silicate glasses using confocal microRaman spectroscopy, Chem. Geol., 229, 96, 10.1016/j.chemgeo.2006.01.014 Blank, 1994, Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior, Rev. Mineral., 30, 157 Chabiron, 1999, Determination of water content in melt inclusions by Raman spectroscopy, Terra Nostra, 99/6 Chabiron, 2004, Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy, Contrib. Mineral. Petrol., 146, 485, 10.1007/s00410-003-0510-x Clarke, 1992 Costi, 2009, The peralkaline tin-mineralized Madeira cryolite albite-rich granite of Pitinga, Amazonian Craton, Brazil: petrography, mineralogy and crystallization processes, Can. Mineral., 47, 1301, 10.3749/canmin.47.6.1301 Di Muro, 2005, Quantification of water content and speciation in natural silicic glasses (phonolites, dacites, rhyolites) by confocal microRaman spectrometry, Geochim. Cosmochim. Acta, 70, 2868, 10.1016/j.gca.2006.02.016 Di Muro, 2006, Influence of composition and thermal history of volcanic glasses on water content as determined by micro-Raman spectrometry, Appl. Geochem., 21, 802, 10.1016/j.apgeochem.2006.02.009 Dingwell, 1987, Melt viscosities in the system NaAlSi3O8–H2O–F2O−1, 1, 423 Frantz, 1993, An optical cell for Raman spectroscopic studies of supercritical fluids and its application to the study of water to 500°C and 2000bar, Chem. Geol., 106, 9, 10.1016/0009-2541(93)90163-D Giordano, 2008, Viscosity of magmatic liquids: a model, EPSL, 271, 123, 10.1016/j.epsl.2008.03.038 Gmelin, 1954, Gmelins Handbuch der anorganischen Chemie, 13 Goranson, 1931, The solubility of water in granitic magmas, Am. J. Sci., 22, 481, 10.2475/ajs.s5-22.132.481 Gresens, 1967, Tectonic-hydrothermal pegmatites. I. The model, Contrib. Mineral. Petrol., 15, 345, 10.1007/BF00404201 Holtz, 1996, High-temperature Raman spectroscopy of silicate and aluminosilicate hydrous glasses: implications for water speciation, Chem. Geol., 128, 25, 10.1016/0009-2541(95)00161-1 Johannes, 1996 Kalinichev, 1993, Molecular dynamics and self-diffusion in supercritical water, Ber. Bunsen Ges. Phys. Chem., 97, 872, 10.1002/bbpc.19930970707 Kalinichev, 1995, Molecular dynamics of supercritical water: a computer simulation of vibrational spectra with the flexible BJH potential, Geochim. Cosmochim. Acta, 59, 641, 10.1016/0016-7037(94)00289-X Klimm, 2003, Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia, Precambrian Res., 124, 327, 10.1016/S0301-9268(03)00092-5 Kotel'nikova, 2010, Immiscibility in sulfate-bearing fluid systems at high temperatures and pressures, Geochem. Int., 48, 68 Kotel'nikova, 2011, Na2CO3-bearing fluids: experimental study at 700°C and under 1, 2, and 3kbar pressure using synthetic fluid inclusions in quartz, Geol. Ore Deposits, 53, 381 Leeder, 1983, Einflüsse von Mantelprozessen auf Paragenesen in Gesteinen und Lagerstätten, 383 Leeder, 1985, Stoffliche Vorgänge der Arkogenese, Freiberg. Forschungsh., C 398, 30 Leeder, 1985, Zur Bedeutung der Liquation in Gesteins- und Lagerstättenbildung, Z. Geol. Wissen, 13, 601 London, 1992, The application of experimental petrology to the genesis and crystallization of granitic pegmatites, Can. Mineral., 30, 499 London, 2008, Pegmatites, Can Mineral, Special Publication, 10 Lukkari, 2009, Crystallization of the Kymi topaz granite stock within the Wiborg granite batholith, Finland: evidence from melt inclusions, Can. Mineral., 47, 1359, 10.3749/canmin.47.6.1359 Manning, 2004, The chemistry of subduction-zone fluids, EPSL, 223, 1, 10.1016/j.epsl.2004.04.030 McKenzie, 1985, The extraction of magma from the crust and mantle, EPSL, 74, 81, 10.1016/0012-821X(85)90168-2 McMillan, 1995, Vibrational spectroscopy of silicate liquids, Rev Mineral, 32, 247 Mercier, 2010, Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions, Geochim. Cosmochim. Acta, 74, 5641, 10.1016/j.gca.2010.06.020 Müller, 2006, Water content of granitic melts from Cornwall and Erzgebirge: a Raman spectroscopy study of melt inclusions, Eur. J. Mineral., 18, 429, 10.1127/0935-1221/2006/0018-0429 Mustart, D.A. Phase relations in the peralkaline portion of the system Na2O-Al2O3- SiO2-H2O. Dissertation, Stanford University; 1972. Mysen, 2010, Speciation and mixing behavior of silica-saturated aqueous fluid at high temperature and pressure, Am. Mineral., 95, 1807, 10.2138/am.2010.3539 Naumov, 1979, Determination of concentration and pressure of volatiles in magmatic melts based on study of inclusions in minerals, Geochimija, 7, 997 Naumov, 2010, Average composition of igneous melts from main geodynamic settings according to investigation of melt inclusions in minerals and quenched glasses of rocks, Geochem. Int., 48, 1185, 10.1134/S0016702910120049 Nabelek, 2010, The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts, Contrib. Mineral. Petrol., 160, 313, 10.1007/s00410-009-0479-1 Niggli, 1920 Oliveira, 2009, Mesoarchean sanukitoid rocks of the Rio Maria granite-greenstone terrane, Amazonian craton, Brazil, J. South Am. Earth Sci., 27, 146, 10.1016/j.jsames.2008.07.003 Oliveira, 2010, Petrological constraints on crystallization conditions of Mesoarchean sanukitoid rocks, Southeastern Amazonian craton, Brazil, J. Petrol., 51, 2121, 10.1093/petrology/egq051 Reyf, 1990 Reyf, 2009, The conditions and mechanisms of the formation of granitic ore magma systems Roedder, 1984, Fluid inclusions, Rev. Mineral., 12 Roedder, 2003, Significance of melt inclusions Roozeboom, 1918, Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre. II Schmitt, 2002, Zr–Nb–REE mineralization in peralkaline granites from the Amis Complex, Brandberg (Namibia): evidence for magmatic pre-enrichment from melt inclusions, Econ. Geol., 97, 399, 10.2113/gsecongeo.97.2.399 Schneiderhöhn, 1961 Shaw, 1972, Viscosities of magmatic silicate liquids: an empirical method of prediction, Am. J. Sci., 272, 870, 10.2475/ajs.272.9.870 Smith, 1953, Complex inclusions in pegmatite minerals, Am. Mineral., 38, 559 Severs, 2006, Experimental determination of H2O loss from melt inclusions during laboratory heating, Chem. Geol., 237, 358, 10.1016/j.chemgeo.2006.07.008 Sorby, 1858, On the microscopic structure of crystals, indicating the origin of minerals and rocks, Proceedings of the Geological Society of London Quarterly Journal, 14, 453, 10.1144/GSL.JGS.1858.014.01-02.44 Sowerby, 2002, The effect of fluorine, boron and excess sodium on the critical curve in the albite–H2O system, Contrib. Mineral. Petrol., 143, 32, 10.1007/s00410-001-0334-5 Thomas, J.B. Melt inclusion geochemistry. Unpublished dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; 2003. Thomas, R. Untersuchungen von Einschlüssen zur thermodynamischen und physikochemischen Charakteristik lagerstättenbildender Lösungen und Prozesse im magmatischen und postmagmatischen Bereich. Bergakademie Freiberg, Dissertation A; 1979. Thomas, R. Untersuchungen von Schmelzeinschlüssen und ihre Anwendung zur Lösung lagerstättengeologischer und petrologischer Problemstellungen. Bergakademie Freiberg, Dissertation B; 1989. Thomas, 1994, Fluid evolution in relation to the emplacement of the Variscan granites in the Erzgebirge region: a review of the melt and fluid inclusion evidence, 70 Thomas, 1994, Estimation of water content of granitic melts from inclusion data, 224 Thomas, 1994, Estimation of the viscosity and the water content of silicate melts from melt inclusion data, Eur. J. Mineral., 6, 511, 10.1127/ejm/6/4/0511 Thomas, 2000, Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy, Am. Mineral., 85, 868, 10.2138/am-2000-5-631 Thomas, 2002, Determination of water contents in melt inclusions by laser Raman spectroscopy, 211 Thomas, 2006, Progress in the determination of water in glasses and melt inclusions with Raman spectroscopy: a short review, Z. Geol. Wiss., 34, 159 Thomas, 2007, Progress in the determination of water in glasses and melt inclusions with Raman spectroscopy: a short review, Acta Petrol. Sinica, 23, 15 Thomas, 2008, Water and melt/melt immiscibility, the essential components in the formation of pegmatites; evidence from melt inclusions, Z. Geol. Wiss., 36, 347 Thomas, 2010, Hambergite-rich melt inclusions in morganite crystals from the Muiane pegmatite, Mozambique and some remarks on the paragenesis of hambergite, Mineral. Petrol., 100, 227, 10.1007/s00710-010-0132-8 Thomas, 2009, A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems, Mineral. Petrol., 96, 129, 10.1007/s00710-009-0053-6 Thomas, 2011, Tantalite-(Mn) from the Borborema pegmatite province, northeastern Brazil: conditions of formation and melt- and fluid-inclusion constraints on experimental studies, Miner. Deposita, 46, 749, 10.1007/s00126-011-0344-9 Thomas, 2008, Ramanite-(Cs) and ramanite-(Rb): new cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy, Am. Mineral., 93, 1034, 10.2138/am.2008.2727 Thomas, 2011, Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark, Contrib. Mineral. Petrol., 161, 315, 10.1007/s00410-010-0533-z Thomas, 2009, The miarolitic pegmatites from the Königshain: a contribution to understanding the genesis of pegmatites, Contrib. Mineral. Petrol., 157, 505, 10.1007/s00410-008-0349-2 Thomas, 2003, The behaviour of boron in a peraluminous granite–pegmatite system and associated hydrothermal solutions: a melt and fluid inclusion study, Contrib. Mineral. Petrol., 144, 457, 10.1007/s00410-002-0410-5 Thomas, 2005, Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin–granite magmas: a melt/fluid-inclusion study, Contrib. Mineral. Petrol., 148, 582, 10.1007/s00410-004-0624-9 Thomas, 1997, Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: volatile content and entrapment conditions, J. Petrol., 38, 1753, 10.1093/petrology/38.12.1753 Thomas, 2006, Laser Raman spectroscopic measurements of water in unexposed glass inclusions, Am. Mineral., 91, 467, 10.2138/am.2006.2107 Thomas, 1999, Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids?, Terra Nostra, 99/6, 305 Thomas, 2000, Strong tin enrichment in a pegmatite-forming melt, Miner. Deposita, 35, 570, 10.1007/s001260050262 Thomas, 2000, Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure, Contrib. Mineral. Petrol., 139, 394, 10.1007/s004100000120 Thomas, 2006, The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals, Lithos, 91, 137, 10.1016/j.lithos.2006.03.013 Thomas, 2011, Be-daughter minerals in fluid and melt Inclusions: implications for the enrichment of Be in granite-pegmatite systems, Contrib. Mineral. Petrol., 161, 483, 10.1007/s00410-010-0544-9 Thomas, 2008, Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets, Am. Mineral., 93, 1550, 10.2138/am.2008.2834 Turnbull, 1961, The liquid state and the liquid–solid transition, Transaction of the Metallurgical Soc. of AIME, 221, 422 Tuttle, 1958, Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O, 74 Veksler, 1998, Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave, J. Petrol., 39, 2095, 10.1093/petrology/39.11.2095 Vogel, 1959 Vogt, 1904 Walrafen, 1964, Raman spectral studies of water structure, J. Chem. Phys., 40, 3249, 10.1063/1.1724992 Walrafen, 2006, Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH, J. Chem. Phys., 124, 114504-1, 10.1063/1.2121710 Wyllie, 1959, Effect of carbon dioxide on the melting of granite and feldspar, Am. J. Sci., 257, 648, 10.2475/ajs.257.9.648 Zajacz, 2005, A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy, Contrib. Mineral. Petrol., 150, 631, 10.1007/s00410-005-0040-9 Zagorsky, 2007, Deep fluid flow–melt interaction and problems of granite–pegmatite system petrogenesis. Abstracts in Granitic pegmatites: the state of the art, Memórias Porto, 8, 106