Drift analysis and average time complexity of evolutionary algorithms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambati, 1991, Heuristic combinatorial optimization by simulated Darwinian evolution: A polynomial time algorithm for the traveling salesman problem, Biological Cybernetics, 65, 31, 10.1007/BF00197287
Droste, 1998, A rigorous complexity analysis of the (1+1) evolutionary algorithm for linear functions with boolean inputs, Evolutionary Computation, 6, 185, 10.1162/evco.1998.6.2.185
Eiben, 1999, Theory of evolutionary algorithms: A bird eye view, Theoret. Comput. Sci., 229, 3, 10.1016/S0304-3975(99)00089-4
Fogel, 1991
Fogel, 1993, Empirical estimation of the computation required to discover approximate solutions to the traveling salesman problem using evolutionary programming, 56
Goldberg, 1989
Hajek, 1982, Hitting time and occupation time bounds implied by drift analysis with applications, Adv. Appl. Probab., 14, 502, 10.2307/1426671
He, 1998, The computational time analysis of genetic algorithms, 440
He, 1999, The computational time of genetic algorithms for fully deceptive problem, Chinese J. Comput., 21, 999
He, 1999, On the convergence rate of genetic algorithms, Theoret. Comput. Sci., 229, 23, 10.1016/S0304-3975(99)00091-2
Holland, 1992
Karp, 1972, Reducibility among combinatorial problems, 85
Khuri, 1994, An evolutionary approach to combinatorial optimization problems, 66
Michalewicz, 1996
Neveu, 1975
Rudolph, 1996, How mutation and selection solve long path problem in polynomial expected time, Evolutionary Computation, 4, 195, 10.1162/evco.1996.4.2.195
Rudolph, 1997
Rudolph, 1998, Finite Markov chain results in evolutionary computation: A tour d'horizon, Fundamenta Informaticae, 35, 67, 10.3233/FI-1998-35123405
Schwefel, 1995
Sasaki, 1988, The time complexity of maximum matching by simulated annealing, J. ACM, 35, 387, 10.1145/42282.46160
Tweedie, 1976, Criteria for classifying general Markov chains, Adv. Appl. Probab., 8, 737, 10.2307/1425932
van Nimwegen, 1999, Statistical dynamics of the royal road genetic algorithm, Theoret. Comput. Sci., 229, 41, 10.1016/S0304-3975(99)00119-X