Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake
Tóm tắt
Absorption measurements from chromophoric dissolved organic matter (CDOM) and their relationships with dissolved organic carbon (DOC) and fluorescence were studied in Lake Taihu, a large, shallow, subtropical lake in China. Absorption spectra of lake water samples were measured from 240 nm to 800 nm. Highest values of a(λ), DOC and F
n
(355) occurred near the river inflow to Meiliang Bay and decreased towards the central lake basin. A significant spatial difference was found between Meiliang Bay and the central lake basin in absorption coefficient, DOC-specific absorption coefficient, exponential slope coefficient, DOC concentration and fluorescence value. The spatial distribution of CDOM suggested that a major part of CDOM in the lake was from river input. CDOM absorption coefficients were correlated with DOC over the wavelength range 280–500 nm, and a(355) was also correlated with F
n
(355), which showed that CDOM absorption could be inferred from DOC and fluorescence measurement. The coefficient of variation between a(λ) and DOC concentration decreased with increase in wavelength from 240 nm to 800 nm. Furthermore, a significant negative linear relationship was recorded between S value and CDOM absorption coefficient, as well as DOC-specific absorption coefficient. S value and DOC-specific absorption coefficient were used as a proxy for CDOM composition and source. Accurate CDOM absorption measurements are very useful in explaining UV attenuation and in developing, validating remote sensing model of water quality in Lake Taihu.
Tài liệu tham khảo
Benner, R. & B. Biddanda, 1998. Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth. Limnology and Oceanography 43: 1373–1378.
Bricaud, A., A. Morel & L. Prieur, 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain. Limnology and Oceanography 26: 43–53.
Callahan, J., M. H. Dai, R. F. Chen, X. L. Li Z. M. Lu & W. Huang, 2004. Distribution of dissolved organic matter in the Pearl River Estuary, China. Marine Chemistry 89: 211–224.
Carder, K. L., S. K. Hawes, R. C. Smith, R. G. Steward & B. G. Mitchell, 1991. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. Journal of Geophysical Research 9: 20599–20611.
Carder, K. L., R. G. Steward, G. R. Harvey & P. B. Ortner, 1989. Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography 34: 68–81.
Chen, Z. Q., Y. Li & J. M. Pan, 2004. Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, China. Continental Shelf Research 24: 1845–1856.
Davies-Colley, R. J., 1983. Absorption of light by yellow substance in freshwater lakes. Limnology and Oceanography 32: 416–425.
De Haan, H., 1993. Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnology and Oceanography 38: 1072–1076.
Del Castillo, C. E., P. G. Coble, J. M. Morell, J. M. López & J. E. Corredor, 1999. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Marine Chemistry 66: 35–51.
Del Castillo, C. E. & P. G. Coble, 2000. Seasonal variability of the colored dissolved organic matter during the 1994–95 NE and SW Monsoons in the Arabian Sea. Deep–Sea Research II 47: 1563–1579.
Ferrari, G. M., 2000. The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea Gulf of Lions. Marine Chemistry 70: 339–357.
Ferrari, G. M. & M. D. Dowell, 1998. CDOM absorption characteristics with relation to fluorescence and salinity in coastal areas of the Southern Baltic Sea. Estuarine, Coastal and Shelf Science 47: 91–105.
Ferrari, G. M., M. D. Dowell, S. Grossi & C. Targa, 1996. Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region. Marine Chemistry 55: 299–316.
Frenette, J. J., M. T. Arts & J. Morin, 2003. Spectral gradients of downwelling light in a fluvial lake (Lake Saint-Pierre, St-Lawrence River). Aquatic Ecology 37: 77–85.
Gallie, E. A., 1997. Variation in the specific absorption of dissolved organic carbon in Northern Ontario lakes. In Steven, G. A. & F. Robert (eds), Ocean Optics XIII, Proc. SPIE 2963, 417–422.
Green, S. & N. Blough, 1994. Optical absorption and fluorescence properties of chomophoric dissolved organic matter in natural waters. Limnology and Oceanography 39: 1903–1916.
Hoge, F. E., A. Vodacek & N. V. Blough, 1993. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements. Limnology and Oceanography 38: 1394–1402.
Huovinen, P. S., H. Penttolä & M. R. Soimasuo, 2003. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland. Chemosphere 51: 205–214.
Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystem. Cambridge University Press, Cambridge, Britain, 57–71.
Kowalczuk, P., W. J. Cooper, R. F. Whitehead, M. J. Durako & W. Sheldon, 2003. Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South Atlantic Bight. Aquatic Science 65: 384–401.
Laurion, I., M. Ventura, J. Catalan, R. Psenner & R. Sommaruga, 2000. Attenuation of ultraviolet radiation in mountain lakes: factors controlling the among- and within-lake variability. Limnology and Oceanography 45: 1274–1288.
Markager, W. & W. F. Vincent, 2000. Spectral light attenuation and absorption of UV and blue light in natural waters. Limnology and Oceanography 45: 642–650.
Mazzuoli, S., S. Loiselle, V. Hull, L. Bracchini & C. Rossi, 2003. The analysis of the seasonal, spatial, and compositional distribution of humic substances in a subtropical shallow lake. Acta Hydrochimica et Hydrobiologia 31: 461–468.
Morris, D. P. & B. P. Hargreaves, 1997. The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnology and Oceanography 42: 239–249.
Morris, D. P., H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R. Moeller & C. Queimalinos, 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography 40: 1381–1391.
Nelson, N. B., D. A. Siegel & A. F. Michaels, 1998. Seasonal dynamics of colored dissolved organic material in the Sargasso Sea. Deep–Sea Research I 45: 931–957.
Peuravuori, J. & K. Pihlaja, 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta 337: 133–149.
Reche, I., M. L. Pace & J. J. Cole, 1998. Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon. Microbial Ecology 6: 270–280.
Rochelle-Newall, E. J. & T. R. Fisher, 2002a. Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Marine Chemistry 77: 7–21.
Rochelle-Newall, E. J. & T. R. Fisher, 2002b. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Marine Chemistry 77: 23–41.
Rochelle-Newall, E., B. Delille, M. Frankignoulle, J. P. Gattuso1, S. Jacquet, U. Riebesell & A. Terbruggen, 2004. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels. Marine Ecology Progress Series 272: 25–311.
Schindler, D. W., P. J. Curtis, B. R. Parker & M. P. Stainton, 1996. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379: 705–708.
Seritti, A., D. Russo, L. Nannicini & R. Del Vecchio, 1998. DOC, absorption and fluorescence properties of estuarine and coastal waters of the Northern Tyrrhenian Sea. Chemical Speciation and Bioavailability 10: 95–106.
Stedmon, C. A., S. Markager & H. Kaas, 2000. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science 51: 67–278.
Vodacek, A., F. E. Hoge, R. N. Swift, J. K. Yungel, E. T. Peltzer & N. V. Blough, 1995. The use of in situ and airborne fluorescence measurements to determine UV absorption coefficients and DOC concentrations in surface waters. Limnology and Oceanography 40: 411–415.
Williamson, C. E., R. S. Stemberger, D. P. Morris, T. M. Frost & S. G. Paulsen, 1996. Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnology and Oceanography 41: 1024–1034.
Yacobi, Y. Z., J. J. Alberts, M. Takács & M. Mcelvaine, 2003. Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers: the impact of molecular size distribution. Journal of Limnology 62: 41–46.
Yan, N. D., W. Keller, N. M. Scully, D. R. S. Lean & P. J. Dillon, 1996. Increased UV-B penetration in a lake owing to drought-induced acidification. Nature 381: 141–143.
Zhang, Y. L., B. Q. Qin, L. Zhang, G. W. Zhu & W. M. Chen, 2005. Optical properties and fluorescence of chromophoric dissolved organic matter (CDOM) of shallow lakes in the middle and lower reaches of the Yangtze River. Journal of Freshwater Ecology 20(3): 451–459.