Handling expensive multi-objective optimization problems with a cluster-based neighborhood regression model

Applied Soft Computing - Tập 80 - Trang 211-225 - 2019
Zefeng Chen1, Yuren Zhou1,2, Xiaoyu He1,3
1School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2Engineering Research Institute, Guangzhou College of South China University of Technology, Guangzhou 510800, China
3Collaborative Innovation Center of High Performance Computing, Sun Yat-sen University, Guangzhou 510006, China

Tài liệu tham khảo

M. Farina, P. Amato, On the optimal solution definition for many-criteria optimization problems, in: Fuzzy Information Processing Society, 2002. Proceedings. Nafips. 2002 Meeting of the North American, 2002, pp. 233–238. Mardle, 2001 Yu, 1974, Cone convexity cone extreme points and nondominated solutions in decision problems with multiobjectives, J. Optim. Theory Appl., 14, 319, 10.1007/BF00932614 Bäck, 1996 Michalewicz, 1996 T. Wagner, N. Beume, B. Naujoks, Pareto-, aggregation-, and indicator-based methods in many-objective optimization, in: International Conference on Evolutionary Multi-criterion Optimization, 2007, pp. 742–756. Li, 2015, Many-objective evolutionary algorithms:a survey, Acm Comput. Surv., 48, 1, 10.1145/2792984 Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017 Deb, 2014, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints, IEEE Trans. Evol. Comput., 18, 577, 10.1109/TEVC.2013.2281535 Zhang, 2007, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712, 10.1109/TEVC.2007.892759 Xiang, 2017, A vector angle based evolutionary algorithm for unconstrained many-objective optimization, IEEE Trans. Evol. Comput., 21, 131, 10.1109/TEVC.2016.2587808 Chen, 2017, A many-objective evolutionary algorithm based on a projection-assisted intra-family election, Appl. Soft Comput., 61, 394, 10.1016/j.asoc.2017.07.052 Chen, 2018, A historical solutions based evolution operator for decomposition-based many-objective optimization, Swarm Evol. Comput., 41, 167, 10.1016/j.swevo.2018.02.008 S. Jeong, S. Hasegawa, K. Shimoyama, S. Obayashi, Development and investigation of efficient ga/pso-hybrid algorithm applicable to real-world design optimization, in: 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 777–784. http://dx.doi.org/10.1109/CEC.2009.4983024. Shimoyama, 2011, Design optimization of a sport shoe sole structure by evolutionary computation and finite element method analysis, Proc. Inst. Mech. Eng. P J. Sports Eng. Technol., 225, 179 Simpson, 2001, Metamodels for computer-based engineering design: Survey and recommendations, Eng. Comput., 17, 129, 10.1007/PL00007198 Jin, 2011, Surrogate-assisted evolutionary computation: Recent advances and future challenges, Swarm Evol. Comput., 1, 61, 10.1016/j.swevo.2011.05.001 Liu, 2016, A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems, J. Comput. Sci., 12, 28, 10.1016/j.jocs.2015.11.004 Lorentz, 1966 Medgyessy, 1960 Törn, 1989 Cassioli, 2013, Global optimization of expensive black box problems with a known lower bound, J. Global Optim., 57, 177, 10.1007/s10898-011-9834-7 Jones, 1998, Efficient global optimization of expensive black-Box functions, J. Global Optim., 13, 455, 10.1023/A:1008306431147 Zhou, 2006, Combining global and local surrogate models to accelerate evolutionary optimization, IEEE Trans. Syst. Man Cybern. C, 37, 66, 10.1109/TSMCC.2005.855506 Chugh, 2017, A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization, IEEE Trans. Evol. Comput., PP Z. Zhou, Y.S. Ong, M.H. Nguyen, D. Lim, A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm, in: Evolutionary Computation, 2005. The 2005 IEEE Congress on, vol. 3, 2005, pp. 2832–2839. Lian, 2005, Multiobjective optimization using coupled response surface model and evolutionary algorithm., Eur. Radiol., 43, 1316 Goel, 2007, Response surface approximation of pareto optimal front in multi-objective optimization, Comput. Methods Appl. Mech. Engrg., 196, 879, 10.1016/j.cma.2006.07.010 A. Pagano, L. Federico, M. Barbarino, F. Guida, M. Aversano, Multi-objective aeroacoustic optimization of an aircraft propeller, in: Aiaa/issmo Multidisciplinary Analysis and Optimization Conference, 2013, pp. 189–208. Regis, 2007, A stochastic radial basis function method for the global optimization of expensive functions, INFORMS J. Comput., 19, 497, 10.1287/ijoc.1060.0182 Regis, 2011, Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions, Comput. Oper. Res., 38, 837, 10.1016/j.cor.2010.09.013 Regis, 2014, Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions, IEEE Trans. Evol. Comput., 18, 326, 10.1109/TEVC.2013.2262111 Sun, 2017, Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems, IEEE Trans. Evol. Comput., PP Ohno, 2002, A framework for evolutionary optimization with approximate fitness functions, IEEE Trans. Evol. Comput., 6, 481, 10.1109/TEVC.2002.800884 A. Gaspar-Cunha, A. Vieira, A hybrid multi-objective evolutionary algorithm using an inverse neural network, in: Hybrid Metaheuristics, First International Workshop, HM 2004, Valencia, Spain, August (2004) 22-23, Proceedings, 2004, pp. 25–30. M. Arabnia, W. Ghaly, A strategy for multi-objective shape optimization for turbine stages in three-dimensional flow, in: Proceedings of the Asme Turbo Expo, 2013, pp. 489–502. I. Loshchilov, M. Schoenauer, M. Sebag, Comparison-based optimizers need comparison-based surrogates, in: International Conference on Parallel Problem Solving From Nature, 2010, pp. 364–373. I. Loshchilov, M. Schoenauer, A mono surrogate for multiobjective optimization, in: Genetic and Evolutionary Computation Conference 2010, 2010, pp. 471–478. Herrera, 2014, Metamodel-assisted optimization based on multiple kernel regression for mixed variables, Struct. Multidiscip. Optim., 49, 979, 10.1007/s00158-013-1029-z Jin, 2005, A comprehensive survey of fitness approximation in evolutionary computation, Soft Comput., 9, 3, 10.1007/s00500-003-0328-5 Santana-Quintero, 2010 T. Chugh, K. Sindhya, J. Hakanen, K. Miettinen, A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms, Soft Comput. http://dx.doi.org/10.1007/s00500-017-2965-0. Mockus, 1989, 157 Knowles, 2006, Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, IEEE Trans. Evol. Comput., 10, 50, 10.1109/TEVC.2005.851274 Ponweiser, 2008 Davins-Valldaura, 2017, Parego extensions for multi-objective optimization of expensive evaluation functions, J. Global Optim., 67, 79, 10.1007/s10898-016-0419-3 A. Giotis, K.C. Giannakoglou, J. Périaux, A reduced-cost multi-objective optimization method based on the pareto front technique, neural networks and pvm, in: Proceedings of the ECCOMAS, 2000, p. 9. Emmerich, 2004, Metamodel assisted multiobjective optimisation strategies and their application in airfoil design, 249 Emmerich, 2006, Single- and multiobjective evolutionary optimization assisted by gaussian random field metamodels, IEEE Trans. Evol. Comput., 10, 421, 10.1109/TEVC.2005.859463 Zhang, 2010, Expensive multiobjective optimization by moea/d with gaussian process model, IEEE Trans. Evol. Comput., 14, 456, 10.1109/TEVC.2009.2033671 Chugh, 2017, A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization, IEEE Trans. Evol. Comput., PP Cheng, 2016, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20, 773, 10.1109/TEVC.2016.2519378 T. Wagner, M. Emmerich, A. Deutz, W. Ponweiser, On expected-improvement criteria for model-based multi-objective optimization, in: International Conference on Parallel Problem Solving From Nature, 2010, pp. 718–727. M.T.M. Emmerich, A.H. Deutz, J.W. Klinkenberg, Hypervolume-based expected improvement: Monotonicity properties and exact computation, in: 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, pp. 2147–2154. http://dx.doi.org/10.1109/CEC.2011.5949880. I. Hupkens, A. Deutz, K. Yang, M. Emmerich, Faster exact algorithms for computing expected hypervolume improvement, in: International Conference on Evolutionary Multi-Criterion Optimization, 2015, pp. 65–79. Namura, 2017, Expected improvement of penalty-based boundary intersection for expensive multiobjective optimization, IEEE Trans. Evol. Comput., PP Zhan, 2017, Expected improvement matrix-based infill criteria for expensive multiobjective optimization, IEEE Trans. Evol. Comput., PP Hansen, 2001 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Neural Networks, 1995. Proceedings. IEEE International Conference on, vol. 4, 1995, 1942–1948. http://dx.doi.org/10.1109/ICNN.1995.488968. D.E. Golberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addion wesley. Jin, 2002, A framework for evolutionary optimization with approximate fitness functions, IEEE Trans. Evol. Comput., 6, 481, 10.1109/TEVC.2002.800884 Lawson, 1974, Solving least squares problems, Cambridge Univ. Pr., 77, 673 Kay, 2000, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code in wsc ’05: proceedings of the 37th conference on winter simulation, Technometrics, 42, 55, 10.1080/00401706.2000.10485979 Sacks, 2010, Design and analysis of computer experiments, Statist. Sci., 94, 307 Deb, 1995, Simulated binary crossover for continuous search space, Complex Syst., 9, 115 Kalyanmoy Deb, 1999, A combined genetic adaptive search (geneas) for engineering design, Comput. Sci. Inf., 26, 30 Zitzler, 2000, Comparison of multiobjective evolutionary algorithms: Empirical results, Evol. Comput., 8, 173, 10.1162/106365600568202 K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002 Congress on, vol. 1, 2002, pp. 825–830. http://dx.doi.org/10.1109/CEC.2002.1007032. Mogilicharla, 2014, Multi-objective optimization of bulk vinyl acetate polymerization with branching, Mater. Manuf. Process., 29, 210, 10.1080/10426914.2013.872271 Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the Cec 2009 Special Session and Competition, University of Essex. Van, 1999, Multiobjective evolutionary algorithm research: A history and analysis, Evol. Comput., 8, 125 Y. Tian, R. Cheng, X. Zhang, Y. Jin, Platemo: A matlab platform for evolutionary multi-objective optimization, 2016. Das, 2000, Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 8, 631, 10.1137/S1052623496307510 Wilcoxon, 1945, Individual comparisons by ranking methods, Biom. Bull., 1, 80, 10.2307/3001968