An efficient two-parametric family with memory for nonlinear equations

Alicia Cordero1, Taher Lotfi2, Parisa Bakhtiari3, Juan R. Torregrosa1
1Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
2Department of Applied Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
3Young Researchers and Elite Club Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Math. 21, 643–651 (1974)

Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equation. J. Comput. Appl. Math. 252, 95–102 (2013)

Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218, 11496–11508 (2012)

Džunić, J.: On efficient two-parameter methods for solving nonlinear equations. Numer. Algorithms. 63(3), 549–569 (2013)

Džunić, J., Petković, M.S.: On generalized multipoint root-solvers with memory. J. Comput. Appl. Math. 236, 2909–2920 (2012)

Petković, M.S., Neta, B., Petković, L.D., Džunić, J. (ed.).: Multipoint methods for solving nonlinear equations. Elsevier (2013)

Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)

Soleymani, F., Shateyi, S.: Two optimal eighth-order derivative-free classes of iterative methods. Abstr. Appl. Anal. 2012(318165), 14 (2012). doi: 10.1155/2012/318165

Soleymani, F., Sharma, R., Li, X., Tohidi, E.: An optimized derivative-free form of the Potra-Pták methods. Math. Comput. Model. 56, 97–104 (2012)

Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011(693787), 12 (2011). doi: 10.5402/2011/693787

Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)

Wang, X., Džunić, J., Zhang, T.: On an efficient family of derivative free three-point methods for solving nonlinear equations. Appl. Math. Comput. 219, 1749–1760 (2012)

Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)

Ortega, J.M., Rheinboldt, W.G. (ed.).: Iterative Solutions of Nonlinear Equations in Several Variables, Ed. Academic Press, New York (1970)

Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)

Blanchard, P.: Complex Analytic Dynamics on the Riemann Sphere. Bull. AMS 11(1), 85–141 (1984)

Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. arXiv: 1307.6705 [math.NA]