Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS

Journal of Hydrology - Tập 504 - Trang 69-79 - 2013
Mahyat Shafapour Tehrany1, Biswajeet Pradhan1, Mustafa Neamah Jebur1
1Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Tài liệu tham khảo

Akgun, 2012, An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm, Comput. Geosci., 38, 23, 10.1016/j.cageo.2011.04.012 Ayalew, 2005, The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65, 15, 10.1016/j.geomorph.2004.06.010 Bates, 2003, Optimal use of high-resolution topographic data in flood inundation models, Hydrol. Process., 17, 537, 10.1002/hyp.1113 Benediktsson, 1990, Neural network approaches versus statistical methods in classification of multisource remote sensing data, IEEE Trans. Geosci. Remote Sens., 28, 540, 10.1109/TGRS.1990.572944 Berry, 1997 Bhaduri, 2008, Distributed decision-tree induction in peer-to-peer systems, Stat. Anal. Data Min., 1, 85, 10.1002/sam.10006 Biggs, 1991, A method of choosing multiway partitions for classification and decision trees, J. Appl. Stat., 18, 49, 10.1080/02664769100000005 Bou Kheir, 2010, Spatial soil zinc content distribution from terrain parameters: a GIS-based decision-tree model in Lebanon, Environ. Pollut., 158, 520, 10.1016/j.envpol.2009.08.009 Bronstert, 2003, Floods and climate change: interactions and impacts, Risk Anal., 23, 545, 10.1111/1539-6924.00335 Cerra, 2012, Northwest arkansas comprehensive environmental analysis and regional smart growth plan, Inqiry, 13, 4 Chang, 2008, Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region, J. Environ. Manage., 87, 139, 10.1016/j.jenvman.2007.01.011 Chau, 2005, Comparison of several flood forecasting models in Yangtze River, J. Hydraul. Eng., 10, 485, 10.1061/(ASCE)1084-0699(2005)10:6(485) Christensen, 2003, Climate modelling: severe summertime flooding in Europe, Nature, 421, 805, 10.1038/421805a Dawson, 2006, Flood estimation at ungauged sites using artificial neural networks, J. Hydrol., 319, 391, 10.1016/j.jhydrol.2005.07.032 Degiorgis, 2012, Classifiers for the detection of flood-prone areas using remote sensed elevation data, J. Hydrol., 470–471, 302, 10.1016/j.jhydrol.2012.09.006 Dixon, 2005, Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis, J. Hydrol., 309, 17, 10.1016/j.jhydrol.2004.11.010 Fernández, 2010, Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis, Eng. Geol., 111, 90, 10.1016/j.enggeo.2009.12.006 Fortin, 2001, Distributed watershed model compatible with remote sensing and GIS data. II: Application to Chaudière watershed, J. Hydrol. Eng., 6, 100, 10.1061/(ASCE)1084-0699(2001)6:2(100) García-Pintado, 2013, Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling, J. Hydrol., 495, 252, 10.1016/j.jhydrol.2013.03.050 Ghalkhani, 2012, Application of surrogate artificial intelligent models for real-time flood routing, Water. Environ. J., 10.1111/j.1747-6593.2012.00344.x Hostache, 2010, Assimilation of spatially distributed water levels into a shallow-water flood model. Part II: Use of a remote sensing image of Mosel River, J. Hydrol., 390, 257, 10.1016/j.jhydrol.2010.07.003 Hostache, R., Chini, M., Matgen, P., Giustarini, L., 2013. A new automatic SAR-based flood mapping application hosted on the European Space Agency’s grid processing on demand fast access to imagery environment. In: EGUGA Conference Abstracts, Vienna, Austria. p. 13927. Islam, M.M., Sado, K., Owe, M., Brubaker, K., Ritchie, J., Rango, A., 2001. Flood damage and management modelling using satellite remote sensing data with GIS: case study of Bangladesh. IAHS Publication, pp. 455-457. Jayakrishnan, 2005, Advances in the application of the SWAT model for water resources management, Hydrol. Process., 19, 749, 10.1002/hyp.5624 Jonkman, 2005, Global perspectives on loss of human life caused by floods, Nat. Hazards., 34, 151, 10.1007/s11069-004-8891-3 Kia, 2012, An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia, Environ. Earth Sci., 67, 251, 10.1007/s12665-011-1504-z 2009, 325 Kron, W., 2002. Keynote lecture: Flood risk=hazard×exposure×vulnerability. In: Proceedings of the Flood Defence. Scieence Press, New York Ltd., ISBN 1-880132-54-0. Kusiak, 2010, A data-driven approach for steam load prediction in buildings, Appl. Energy, 87, 925, 10.1016/j.apenergy.2009.09.004 Lee, 2013, Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines, J. Environ. Manage., 127, 166, 10.1016/j.jenvman.2013.04.010 Lee, 2007, Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models, Landslides, 4, 33, 10.1007/s10346-006-0047-y Lee, M.J., Kang, J.E., Jeon, S., 2012. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS). IEEE, pp. 895–898. Li, 2012, A comparison of parameter estimation for distributed hydrological modelling using automatic and manual methods, Adv. Mater. Res., 356, 2372, 10.4028/www.scientific.net/AMR.479-481.2372 Liu, Y.B., De Smedt, F., 2004. WetSpa extension, a GIS-based hydrologic model for flood prediction and watershed management. Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel. Vrije Universiteit Brussel: Brussels. Liu, 2005, Flood modeling for complex terrain using GIS and remote sensed information, Water Resour. Manage., 19, 605, 10.1007/s11269-005-6808-x Maier, 2000, Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Modell. Softw., 15, 101, 10.1016/S1364-8152(99)00007-9 Matgen, 2007, Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management, Int. J. Appl. Earth Obs. Geoinf., 9, 247, 10.1016/j.jag.2006.03.003 Matori, A.N., 2012. Detecting Flood susceptible areas using GIS-based analytic hierarchy process. In: International Conference on Future Environment and Energy, Singapore. McFadden, 1974, Conditional logit analysis of qualitative choice behavior, 105 Merz, 2004, Estimation uncertainty of direct monetary flood damage to buildings, Nat. Hazard. Earth Sys., 4, 153, 10.5194/nhess-4-153-2004 Merz, 2007 Murthy, 1998, Automatic construction of decision trees from data: A multi-disciplinary survey, Data Min. Knowl. Disc., 2, 345, 10.1023/A:1009744630224 Myles, 2004, An introduction to decision tree modeling, J. Chemometr., 18, 275, 10.1002/cem.873 Oh, 2011, Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area, Comput. Geosci., 37, 1264, 10.1016/j.cageo.2010.10.012 Ohlmacher, 2003, Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA, Eng. Geol., 69, 331, 10.1016/S0013-7952(03)00069-3 Opolot, 2013, Application of remote sensing and geographical information systems in flood management: a review, Res. J. Appl. Sci. Eng. Technol., 6, 1884, 10.19026/rjaset.6.3920 Pal, 2003, An assessment of the effectiveness of decision tree methods for land cover classification, Remote Sens. Environ., 86, 554, 10.1016/S0034-4257(03)00132-9 Pourghasemi, 2012, Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran, Nat. Hazards, 63, 965, 10.1007/s11069-012-0217-2 Pourghasemi, 2012, Landslide susceptibility mapping using index of entropy and conditional probability models at Safarood Basin, Iran, Catena, 97, 71, 10.1016/j.catena.2012.05.005 Pourghasemi, 2013, GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi criteria evaluation models (North of Tehran, Iran), Arab. J. Geosci., 10.1007/s12517-012-0825-x Pourghasemi, 2013, A comparative assessment of prediction capabilities of Dempster-Shafer and weights of evidence models in landslide susceptibility mapping using GIS, Geomatics, Natural Hazards and Risk, 4, 93, 10.1080/19475705.2012.662915 Pradhan, 2009, Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques, Cent. Eur. J. Geosci., 1, 120, 10.2478/v10085-009-0008-5 Pradhan, 2010, Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing, J. Spatial. Hydrol., 9 Pradhan, 2010, Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches, J. Indian Soc. Remote Sens., 38, 301, 10.1016/j.cageo.2012.08.023 Pradhan, 2013, A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Comput. Geosci., 51, 350, 10.1016/j.cageo.2012.08.023 Pradhan, 2010, Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia, Environ. Eng Geosci., 16, 107, 10.2113/gseegeosci.16.2.107 Pradhan, 2010, Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia, Landslides, 7, 13, 10.1007/s10346-009-0183-2 Pradhan, 2011, A 100-year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia, J. Flood risk. Manage., 4, 189, 10.1111/j.1753-318X.2011.01103.x Pradhan, 2009, Maximum flood prone area mapping using RADARSAT images and GIS: Kelantan river basin, Int. J. Geoinform., 5, 11 Pradhan, 2010, Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model, Geo-Spatial Inform.Sci., 13, 93, 10.1007/s11806-010-0236-7 Pradhan, 2011, Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model, Int. J. Remote Sens., 32, 4075, 10.1080/01431161.2010.484433 Prakash, 2012, A feasibility of six-hourly rainfall forecast over central India using model output and remote sensing data, Int. J. Hydrol Sci. Technol., 2, 138, 10.1504/IJHST.2012.047409 Roe, 2005, Boosted decision trees as an alternative to artificial neural networks for particle identification, Nucl. Instrum. Methods A, 543, 577, 10.1016/j.nima.2004.12.018 Rozalis, 2010, Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions, J. Hydrol., 394, 245, 10.1016/j.jhydrol.2010.03.021 Saito, 2007, Estimation and evaluation of drainage basins with landslides using decision tree technique and ASTER data, J. Jpn. Landslide Soc., 44, 1, 10.3313/jls.44.1 Saito, 2009, Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan, Geomorphology, 109, 108, 10.1016/j.geomorph.2009.02.026 Schneevoigt, 2008, Detecting alpine landforms from remotely sensed imagery. A pilot study in the Bavarian Alps, Geomorphology, 93, 104, 10.1016/j.geomorph.2006.12.034 Shirzadi, 2012, A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran, Nat. Hazards, 64, 1639, 10.1007/s11069-012-0321-3 Smith, 1998 Stephens, 2012, The impact of uncertainty in satellite data on the assessment of flood inundation models, J. Hydrol., 414, 162, 10.1016/j.jhydrol.2011.10.040 Süzen, 2004, A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate, Environ. Geol., 45, 665, 10.1007/s00254-003-0917-8 Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., 2012a. Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Math. Probl. Eng. <http://dx.doi.org/10.1155/2012/974638>. Tien Bui, 2012, Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS, Comput. Geosci., 45, 199, 10.1016/j.cageo.2011.10.031 Tien Bui, 2012, Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models, Catena, 96, 28, 10.1016/j.catena.2012.04.001 Tilmant, 2002, Comparison of fuzzy and nonfuzzy optimal reservoir operating policies, J. Water Resour. Plan. Manage., 128, 390, 10.1061/(ASCE)0733-9496(2002)128:6(390) Townsend, 1998, Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing, Geomorphology, 21, 295, 10.1016/S0169-555X(97)00069-X Ture, 2009, The comparisons of prognostic indexes using data mining techniques and Cox regression analysis in the breast cancer data, Expert Syst. Appl., 36, 8247, 10.1016/j.eswa.2008.10.014 Wan, 2012, A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel, Swarm and Evolutionary Computation, 8, 26, 10.1016/j.swevo.2012.08.001 Witten, 2005 Xu, 2005, Decision tree regression for soft classification of remote sensing data, Remote Sens. Environ., 97, 322, 10.1016/j.rse.2005.05.008 Yilmaz, 2007, GIS based susceptibility mapping of karst depression in gypsum: a case study from Sivas basin (Turkey), Eng. Geol., 90, 89, 10.1016/j.enggeo.2006.12.004 Youssef, 2011, Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery, Environ. Earth Sci., 62, 611, 10.1007/s12665-010-0551-1