Clustering of time series data—a survey
Tài liệu tham khảo
Han, 2001
J. MacQueen, Some methods for classification and analysis of multivariate observations, in: L.M. LeCam, J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297.
Kaufman, 1990
Bezdek, 1987
Krishnapuram, 2001, Low-complexity fuzzy relational clustering algorithms for web mining, IEEE Trans. Fuzzy Systems, 9, 595, 10.1109/91.940971
Krishnapuram, 1999, A note on the Gustafson–Kessel and adaptive fuzzy clustering algorithms, IEEE Trans. Fuzzy Systems, 7, 453, 10.1109/91.784208
Krishna, 1999, Genetic k-means algorithms, IEEE Trans. Syst. Man Cybernet.-B, 29, 433, 10.1109/3477.764879
Meng, 2002, A genetic hard c-means clustering algorithm, Dyn. Continuous Discrete Impulsive Syst. Ser. B: Appl. Algorithms, 9, 421
V. Estivill-Castro, A.T. Murray, Spatial clustering for data mining with genetic algorithms, http://citeseer.nj.nec.com/estivill-castro97spatial.html.
Hall, 1999, Clustering with a genetically optimized approach, IEEE Trans. Evolutionary Computat., 3, 103, 10.1109/4235.771164
Karypis, 1999, Chameleon: hierarchical clustering using dynamic modeling, Computer August, 68, 10.1109/2.781637
S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering algorithm for large databases, Proceedings of the 1998 ACM-SIGMOD International Conference on Management of Data, Seattle, WA, June 1998, pp. 73–84.
T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, Proceedings of the 1996 ACM-SIGMOD International Conference on Management of Data, Montreal, Canada, June 1996, pp. 103–114.
M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases, Proceedings of the 1996 International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, 1996, pp. 226–231.
M. Ankerst, M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, Proceedings of the 1999 ACM-SIGMOD International Conference on Management of Data, Philadelphia, PA, June 1999, pp. 49–60.
W. Wang, J. Yang, R. Muntz, R., STING: a statistical information grid approach to spatial data mining, Proceedings of the 1997 International Conference on Very Large Data Base (VLDB’97), Athens, Greek, 1997, pp. 186–195.
Cheeseman, 1996, Bayesian classification (AutoClass): theory and results
Carpenter, 1987, A massively parallel architecture for a self-organizing neural pattern recognition machine, Comput. Vision Graphics Image Process., 37, 54, 10.1016/S0734-189X(87)80014-2
Kohonen, 1990, The self organizing maps, Proc. IEEE, 78, 1464, 10.1109/5.58325
Dunn, 1974, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cybernet., 3, 32, 10.1080/01969727308546046
Golay, 1998, A new correlation-based fuzzy logic clustering algorithm for fMRI, Mag. Resonance Med., 40, 249, 10.1002/mrm.1910400211
C.S. Möller-Levet, F. Klawonn, K.-H. Cho, O. Wolkenhauer, Fuzzy clustering of short time series and unevenly distributed sampling points, Proceedings of the 5th International Symposium on Intelligent Data Analysis, Berlin, Germany, August 28–30, 2003.
M. Kumar, N.R. Patel, J. Woo, Clustering seasonality patterns in the presence of errors, Proceedings of KDD ’02, Edmonton, Alberta, Canada.
Kakizawa, 1998, Discrimination and clustering for multivariate time series, J. Amer. Stat. Assoc., 93, 328, 10.2307/2669629
Dahlhaus, 1996, On the Kullback–Leibler information divergence of locally stationary processes, Stochastic Process. Appl., 62, 139, 10.1016/0304-4149(95)00090-9
Shumway, 2003, Time–frequency clustering and discriminant analysis, Stat. Probab. Lett., 63, 307, 10.1016/S0167-7152(03)00095-6
Bezdek, 1998, Some new indexes of cluster validity, IEEE Trans. Syst. Man Cybernet. B: Cybernet., 28, 301, 10.1109/3477.678624
Maulik, 2002, Performance evaluation of some clustering algorithms and validity indices, IEEE Trans. Pattern Anal. Mach. Intell., 24, 1650, 10.1109/TPAMI.2002.1114856
Košmelj, 1990, Cross-sectional approach for clustering time varying data, J. Classification, 7, 99, 10.1007/BF01889706
Baragona, 2001, A simulation study on clustering time series with meta-heuristic methods, Quad. Stat., 3, 1
Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Automat. Control, 19, 716, 10.1109/TAC.1974.1100705
Schwartz, 1978, Estimating the dimension of a model, Ann. Stat., 6, 461, 10.1214/aos/1176344136
Biernacki, 2000, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Trans. Pattern Anal. Mach. Intell., 22, 719, 10.1109/34.865189
T.W. Liao, B. Bolt, J. Forester, E. Hailman, C. Hansen, R.C. Kaste, J. O’May, Understanding and projecting the battle state, 23rd Army Science Conference, Orlando, FL, December 2–5, 2002.
J.J. van Wijk, E.R. van Selow, Cluster and calendar based visualization of time series data, Proceedings of IEEE Symposium on Information Visualization, San Francisco, CA, October 25–26, 1999.
Wismüller, 2002, Cluster analysis of biomedical image time series, Int. J. Comput. Vision, 46, 103, 10.1023/A:1013550313321
Policker, 2000, Nonstationary time series analysis by temporal clustering, IEEE Trans. Syst. Man Cybernet.-B: Cybernet., 30, 339, 10.1109/3477.836381
Gath, 1989, Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell., 7, 773, 10.1109/34.192473
T.W. Liao, Mining of vector time series by clustering, Working paper, 2005.
Wilpon, 1985, Modified k-means clustering algorithm for use in isolated word recognition, IEEE Trans. Acoust. Speech Signal Process., 33, 587, 10.1109/TASSP.1985.1164581
Shaw, 1992, Using cluster analysis to classify time series, Physica D, 58, 288, 10.1016/0167-2789(92)90117-6
Goutte, 1999, On clustering fMRI time series, Neuroimage, 9, 298, 10.1006/nimg.1998.0391
Goutte, 2001, Feature-space clustering for fMRI meta-analysis, Hum. Brain Mapping, 13, 165, 10.1002/hbm.1031
T.-C. Fu, F.-L. Chung, V. Ng, R. Luk, Pattern discovery from stock time series using self-organizing maps, KDD 2001 Workshop on Temporal Data Mining, August 26–29, San Francisco, 2001, pp. 27–37.
Owsley, 1997, Self-organizing feature maps and hidden Markov models for machine-tool monitoring, IEEE Trans. Signal Process., 45, 2787, 10.1109/78.650105
M. Vlachos, J. Lin, E. Keogh, D. Gunopulos, A wavelet-based anytime algorithm for k-means clustering of time series, Proceedings of the Third SIAM International Conference on Data Mining, San Francisco, CA, May 1–3, 2003.
Piccolo, 1990, A distance measure for classifying ARMA models, J. Time Ser. Anal., 11, 153, 10.1111/j.1467-9892.1990.tb00048.x
Beran, 1999, Visualizing the relationship between time series by hierarchical smoothing models, J. Comput. Graph. Stat., 8, 213, 10.2307/1390634
Maharaj, 2000, Clusters of time series, J. Classification, 17, 297, 10.1007/s003570000023
Ramoni, 2002, Bayesian clustering by dynamics, Mach. Learning, 47, 91, 10.1023/A:1013635829250
M. Ramoni, P. Sebastiani, P. Cohen, Multivariate clustering by dynamics, Proceedings of the 2000 National Conference on Artificial Intelligence (AAAI-2000), San Francisco, CA, 2000, pp. 633–638.
K. Kalpakis, D. Gada, V. Puttagunta, Distance measures for effective clustering of ARIMA time-series, Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, CA, November 29–December 2, 2001, pp. 273–280.
Y. Xiong, D.-Y. Yeung, Mixtures of ARMA models for model-based time series clustering, Proceedings of the IEEE International Conference on Data Mining, Maebaghi City, Japan, 9–12 December, 2002.
D. Tran, M. Wagner, Fuzzy c-means clustering-based speaker verification, in: N.R. Pal, M. Sugeno (Eds.), AFSS 2002, Lecture Notes in Artificial Intelligence, 2275, 2002, pp. 318–324.
T. Oates, L. Firoiu, P.R. Cohen, Clustering time series with hidden Markov models and dynamic time warping, Proceedings of the IJCAI-99 Workshop on Neural, Symbolic, and Reinforcement Learning Methods for Sequence Learning.
C. Li, G. Biswas, Temporal pattern generation using hidden Markov model based unsupervised classification, in: D.J. Hand, J.N. Kok, M.R. Berthold (Eds.), Lecture Notes in Computer Science, vol. 164, IDA ’99, Springer, Berlin, 1999, pp. 245–256.
C. Li, G. Biswas, M. Dale, P. Dale, Building models of ecological dynamics using HMM based temporal data clustering—a preliminary study, in: F. Hoffmann et al. (Eds.), IDA 2001, Lecture Notes in Computer Science, vol. 2189, 2001, pp. 53–62.
Wang, 2002, Hidden Markov model-based wear monitoring in turning, J. Manufacturing Sci. Eng., 124, 651, 10.1115/1.1475320
Josien, 2002, Simultaneous grouping of parts and machines with an integrated fuzzy clustering method, Fuzzy Sets Syst., 126, 1, 10.1016/S0165-0114(01)00063-X
Ho, 1994, Decision combination in multiple classifier systems, IEEE Trans. Pattern Anal. Mach. Intell., 16, 66, 10.1109/34.273716
Ng, 1998, Democracy in pattern classifications: combinations of votes from various pattern classifiers, Artif. Intell. Eng., 12, 189, 10.1016/S0954-1810(97)00016-2
R. Ng, J. Han, Efficient and effective clustering method for spatial data mining, Proceedings of the 1994 International Conference on Very Large Data Bases (VLDB’94), Santiago, Chile, September 1994, pp. 144–155.
Ananthanarayana, 2001, Efficient clustering of large data sets, Pattern Recognition, 34, 2561, 10.1016/S0031-3203(01)00097-8
Keogh, 2004, Segmenting time series: a survey and novel approach
Roddick, 2002, A survey of temporal knowledge discovery paradigms and methods, IEEE Trans. Knowledge Data Eng., 14, 750, 10.1109/TKDE.2002.1019212