Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự phát triển chức năng của tuyến vú: Sử dụng phân tích biểu hiện gene và phân cụm quỹ đạo để tiết lộ những thay đổi trong biểu hiện gene trong thời kỳ mang thai, cho con bú và thoái triển
Tóm tắt
Để xác định các cơ chế phân tử mà qua đó việc rút progesterone khởi đầu quá trình tiết sữa, chúng tôi đã xem xét biểu hiện gene toàn cầu trong thời kỳ mang thai và cho con bú ở chuột, tập trung vào giai đoạn xung quanh lúc sinh. Sử dụng phân cụm quỹ đạo để phân tích biểu hiện của 1358 gene đã thay đổi đáng kể giữa ngày 12 của thai kỳ và ngày 9 của thời kỳ cho con bú. Các quỹ đạo chủ yếu giảm xuống bao gồm các gene của mô đệm và proteasome cũng như các gene liên quan đến enzyme phân hủy axit béo. Biểu hiện gene protein sữa tăng lên trong suốt thời kỳ mang thai, trong khi đó biểu hiện của các gene liên quan đến tổng hợp lipid tăng mạnh ngay khi bắt đầu thời kỳ cho con bú. Việc kiểm tra các gene điều hòa có biểu hiện tương tự hoặc bổ sung cho các gene tổng hợp lipid dẫn đến một mô hình trong đó progesterone kích thích tổng hợp TGF-β, Wnt 5b và IGFBP-5 trong thời kỳ mang thai. Những yếu tố này được gợi ý là ức chế sự tiết sữa bằng cách can thiệp vào tín hiệu PRL và IGF-1. Khi progesterone bị rút, tín hiệu PRL và IGF-1 được kích hoạt, tiếp theo là việc kích hoạt Akt/PKB và các SREBPs, dẫn đến tăng cường tổng hợp lipid.
Từ khóa
#progesterone #gene expression #lactation #milk secretion #TGF-β #Wnt 5bTài liệu tham khảo
R. C. Hovey, J. F. Trott, and B. K. Vonderhaar (2002). Establishing a framework for the functional mammary gland: From endocrinology to morphology. J. Mam. Gland Biol. Neoplasia 7:17–38.
M. C. Neville, T. B. McFadden, and I. A. Forsyth (2002). Hormonal regulation of mammary differentiation and lactation. J Mam. Gland Biol. Neoplasia 7:49–66.
C. Brisken (2002). Hormonal control of alveolar development and its implications for breast carcinogenesis. J. Mam. Gland Biol Neoplasia 7:39–48.
T. Phang, M. C. Neville, M. Rudolph, and L. Hunter (2003). Trajectory clustering: A nonparametric method for grouping gene expression time courses, with applications to mammary development. Pacific Symp. Biocomp. 351–362.
N. M. Svrakic, O. Nesic, M. R. Dasu, D. Herndon, and J. R. Perez-Polo (2003). Statistical approach to DNA chip analysis. Recent Prog. Horm. Res. 58:75–93.
K. L. Schwertfeger, J. L. McManaman, C. A. Palmer, M. C. Neville, and S. M. Anderson (2003). Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J. Lipid Res. 44:1100–1112.
M. T. Lewis, S. Ross, P. A. Strickland, C. W. Sugnet, E. Jimenez, C. Hui, and C. W. Daniel (2001). The Gli2 transcription factor is required for normal mouse mammary gland development. Dev. Biol. 238:133–144.
P. F. Lemkin, G. C. Thornwall, K. D. Walton, and L. Hennighausen (2000). The microarray explorer tool for data mining of cDNA microarrays: Application for the mammary gland. Nucleic Acids Res. 28:4452–4459.
C. J. Ormandy, M. J. Naylor, J. Harris, F. Robertson, N. D. Horseman, G. J. Lindeman, J. Visvader, and P. A. Kelly (2003). Investigation of the transcriptional changes underlying functional defects in the mammary glands of prolactin receptor knockout mice. Recent Prog. Horm. Res. 58:297–323.
S. R. Master, J. L. Hartmann, C. M. D-Cruz, S. E. Moody, E. A. Keiper, S. I. Ha, J. D. Cox, G. K. Belka, and L. A. Chodosh (2002). Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol. Endocrinol. 16:1185–1203.
U. Danesch, W. Hoeck, and G. M. Ringold (1992). Cloning and transcriptional regulation of a novel adipocyte-specific gene, FSP27. CAAT-enhancer-binding protein (C/EBP) and C/EBP-like proteins interact with sequences required for differentiation-dependent expression. J. Biol. Chem. 267:7185–7193.
R. R. Banerjee and M. A. Lazar (2003). Resistin: Molecular history and prognosis. J. Mol. Med. 81:218–225.
E. Hu, P. Liang, and B. M. Spiegelman (1996). AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271:10697–10703.
V. Ribon, J. A. Printen, N. G. Hoffman, B. K. Kay, and A. R. Saltiel (1998). A novel, multifuntional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol. Cell. Biol. 18:872–879.
E. J. Blanchette-Mackie, N. K. Dwyer, T. Barber, R. A. Coxey, T. Takeda, C. M. Rondinone, J. L. Theodorakis, A. S. Greenberg, and C. Londos (1995). Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36:1211–1226.
A. Martin-Hidalgo, C. Holm, P. Belfrage, M. C. Schotz, and E. Herrera (1994). Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in rat adipose tissue during pregnancy. Am. J. Physiol. 266:E930–5X.
K. Das, R. Y. Lewis, T. P. Combatsiaris, Y. Lin, L. Shapiro, M. J. Charron, and P. E. Scherer (1999). Predominant expression of the mitochondrial dicarboxylate carrier in white adipose tissue. Biochem. J. 344:313–320.
J. J. Elias, D. R. Pitelka, and R. C. Armstrong (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177:533–547.
D. L. Kleinberg (1997). Early mammary development: Growth hormone and IGF-1. J. Mam. Gland Biol. Neoplasia 2: 49–57.
D. G. Hardie and D. A. Pan (2002). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans. 30:1064–1070.
C. W. Pittius, L. Sankaran, Y. J. Topper, and L. Hennighausen (1988). Comparison of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol. Endocrinol. 2:1027–1032.
G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.
X. Liu, G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11:179–186.
B. Groner and F. Gouilleux (1995). Prolactin-mediated gene activation in mammary epithelial cells. Curr. Opin. Genet. Dev. 5:587–594.
E. Iavnilovitch, B. Groner, and I. Barash (2003). Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol. Cancer. Res. 1:32–47.
S. L. Wyszomierski and J. M. Rosen (2001). Cooperative effects of stat5 (signal transducer and activator of transcription 5) and C/EBP β (CAAT/enhancer-binding protein-β) on β-casein gene transcription are mediated by the glucocorticoid receptor. Mol. Endo. 15:228–240.
S. Li, and J. M. Rosen (1995). Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell Biol. 15:2063–2070.
R. A. McKnight, M. Spencer, J. Dittmer, J. N. Brady, R. J. Wall, and L. Hennighausen (1995). An Ets site in the whey acidic protein gene promoter mediates transcriptional activation in the mammary gland of pregnant mice but is dispensable during lactation. Mol. Endocrinol. 9:717–724.
J. E. Fata, Y. Y. Kong, J. Li, T. Sasaki, R. A. Moorehead, R. Elliott, S. Scully, E. B. Voura, D. L. Lacey, W. J. Boyle, R. Khokha, and J. M. Penninger (2000). The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103:41–50.
Y. Cao, G. Bonizzi, T. N. Seagroves, F. R. Greten, R. Johnson, E. V. Schmidt, and M. Karin (2001). IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107:763–775.
Y. Shigetani, Y. Nobusada, and S. Kuratani (2000). Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: Epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev. Biol. 228:73–85.
J. D. Horton, J. L. Goldstein, and M. S. Brown (2002). SREBPs: Activators of the complete program of colesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109:1125–1135.
M. T. Travers, A. J. Vallance, H. T. Gourlay, C. A. Gill, I. Klein, C. B. Bottema, and M. C. Barber (2001). Promoter I of the ovine acetyl-CoA carboxylase-alpha gene: An E-box motif at-114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. Biochem. J. 359:273–284.
J. M. Lopez, M. K. Bennett, H. B. Sanchez, J. M. Rosenfeld, and T. F. Osborne (1996). Sterol regulation of acetyl coenzyme A carboxylase: A mechanism for coordinate control of cellular lipid. Proc. Natl. Acad. Sci. U.S.A. 93:1049–1053.
S. Y. Oh, S. K. Park, J. W. Kim, Y. H. Ahn, S. W. Park, and K. S. Kim (2003). Acetyl-CoA carboxylase beta gene is regulated by sterol regulatory element-binding protein-1 in liver. J. Biol. Chem. 278:28410–28417.
M. Schweizer, K. Roder, L. Zhang, and S. S. Wolf (2002). Transcription factors acting on the promoter of the rat fatty acid synthase gene. Biochem. Soc. Trans. 30:1070–1072.
S. Nishikawa, R. C. Moore, N. Nonomura, and T. Oka (1994). Progesterone and EGF inhibit mouse mammary gland prolactin receptor and β-casein gene expression. Am. J. Physiol. 267:C1467-C1472.
Y. Mizoguchi, H. Yamaguchi, F. Aoki, J. Enami, and S. Sakai (1997). Corticosterone is required for the prolactin receptor gene expression in the late pregnant mouse mammary gland. Mol. Cell Endocrinol. 132:177–183.
L. Chodosh, H. Gardner, J. V. Rajan, D. Stairs, S. Marquis, and P. Leder (2000). Protein kinase expression during murine mammary development. Dev. Biol. 219:259–276.
D. Wang and H. S. Sul (1998). Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J. Biol. Chem. 273:25420–25426.
A. V. Lee, P. Zhang, M. Ivanova, S. Bonnette, S. Oesterreich, J. M. Rosen, S. Grimm, R. C. Hovey, B. K. Vonderhaar, C. R. Kahn, D. Torres, J. George, S. Mohsin, D. C. Allred, and D. L. Hadsell (2003). Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology 144:2683–2694.
R. K. Bartholomeusz, N. W. Bruce, C. E. Martin, and P. E. Hartmann (1976). Serial measurement of arterial plasma progesterone levels throughout gestation and parturition in individual rats. Acta Endocrinol. 82:436–443.
D. D. Nguyen, A. F. Parlow, and M. C. Neville (2001). Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J. Endocrinol. 170:347–356.
P. M. Ismail, J. Li, F. J. DeMayo, B. W. O'Malley, and J. P. Lydon (2002). A novel LacZ reporter mouse reveals complex regulation of the progesterone receptor promoter during mammary gland development. Mol. Endo. 16:2475–2489.
J. V. Soriano, M. S. Pepper, L. Orci, and R. Montesano (1998). Roles of hepatocyte growth factor/scatter factor and transforming growth factor-β1 in mammary gland ductal morphogenesis. J. Mam. Gland Biol. Neoplasia 3:133–150.
M. H. Barcellos-Hoff, R. Derynck, L.S. Tsang, and J. A. Weatherbee (1994). Transforming growth factor-β activation in irradiated murine mammary gland. J. Clin. Invest. 93:892–899.
L. M. Wakefield, E. Piek, and E. P. Boettinger (2001). TGF-β signaling in mammary gland development and tumorigenesis. J. Mam. Gland Biol. Neoplasia 6:67–82.
S. D. Robinson, G. B. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. Daniel (1991). Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 113:867–878.
A. V. Nguyen and J. W. Pollard (2000). Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127:3107–3118.
S. J. Weber-Hall, D. J. Phippard, C. C. Neimeyer, and T. C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 57:205–214.
C. Brisken, A. Heineman, T. Chavarria, B. Elenbaas, J. Tan, S. K. Dey, J. A. McMahon, A. P. McMahon, and R. A. Weinberg (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Devel. 14:650–654.
S. B. Tepera, P. D. McCrea, and J. M. Rosen (2003). A beta-catenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci. 115:1137–1149.
W. Hsu, R. Shakya, and F. Costantini (2001). Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol. 155:1055–1064.
M. Jonsson, K. Smith, and A. L. Harris (1998). Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. Br. J. Cancer 78:430–438.
E. L. Huguet, K. Smith, R. Bicknell, and A. L. Harris (1995). Regulation of Wnt5a mRNA expression in human mammary epithelial cells by cell shape, confluence, and hepatocyte growth factor. J. Biol. Chem. 270:12851–12856.
D-.A.D. Nguyen, N. Beeman, and M. C. Neville (2001). Regulation of tight junction permeability in the mammary gland. In Cerejido, M. and Anderson, J. M. (eds.), Tight Junctions, 2nd edn., CRC Press, New York, pp. 395–414.
E. Tonner, M. C. Barber, M. T. Travers, A. Logan, and D. J. Flint (1997). Hormonal control of insulin-like growth factor-binding protein-5 production in the involuting mammary gland of the rat. Endocrinology 138:5101–5107.
E. Tonner, M. C. Barber, G. J. Allan, J. Beattie, J. Webster, C. B. A. Whitelaw, and D. J. Flint (2002). Insulin-like growth factor binding protein-5 (IGFBP-5) induces premature cell death in the mammary glands of transgenic mice. Development 129:4547–4557.
E. Marshman, K. A. Green, D. J. Flint, A. White, C. H. Streuli, and M. Westwood (2003). Insulin-like growth factor binding protein 5 and apoptosis in mammary epithelial cells. J. Cell Sci. 15:675–682.
V. Boonyaratanakornkit, D. D. Strong, S. Mohan, D. J. Baylink, C. A. Beck, and T. A. Linkhard (1999). Progesterone stimulation of human insulin-like growth factor binding protein-5 gene transcription in human osteoblasts is mediated by a CACCC sequence in the proximal promoter. J. Biol. Chem. 274:26431–26438.
G. A. Jahn, N. Daniel, G. Jolivet, L. Belair, C. Bole-Feysot, P. A. Kelly, and J. Djiane (1997). In vivo study of prolactin (PRL) intracellular signalling during lactogenesis in the rat: JAK/STAT pathway is activated by PRL in the mammary gland but not in the liver. Biol. Reprod. 57:894–900.
Y. Lee and J. L. Voogt (1999). Feedback effects of placental lactogens on prolactin levels and Fos-related antigen immunoreactivity of tuberoinfundibular dopaminergic neurons in the arcuate nucleus during pregnancy in the rat. Endocrinology 140:2159–2166.
M. Matsumoto, W. Ogawa, K. Teshegawara, H. Inoue, K. Miyake, H. Sakaue, and M. Kasuga (2002). Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase segnaling pathway in insulin-induced expression sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 51:1672–1680.
M. Fleischmann and P. B. Iynedjian (2000). Regulation of sterol regulatory-element binding protein 1 gene expression in liver: Role of insulin and protein kinase B/cAkt. Biochem. J. 349:13–17.
E. H. Davidson, J. P. Rast, P. Olivieri, A. Ransick, C. Calestani, C. H. Yuh, T. Minokawa, G. Amore, V. Himman, C. Arena-Menas, O. Otim, C. T. Brown, C. V. Livi, P. Y. Lee, R. Revilla, A. G. Rust, Z. Pan, M. J. Schilstra, P. J. Clarke, M. I. Amone, L. Rowen, R. A. Cameron, D. R. McClay, L. Hood, and H. Bolouri (2002). A genomic regulatory network for development. Science 295:1669–1678.
D. Gems and J. J. McElwee (2003). Microarraying mortality. Nature 6946:259–261.