Existence and uniqueness of positive periodic solutions for a neutral Logarithmic population model
Tài liệu tham khảo
Gopalsamy, 1992, vol. 74
Kirlinger, 1986, Permanence in Lotka–Volterra equations linked prey–predator systems, Math. Biosci., 82, 165, 10.1016/0025-5564(86)90136-7
Li, 1997, Attractivity of a positive periodic solution for all other positive solution in a delay population model, Appl. Math. -JCU, 12, 279
Liu, 2002, Positive periodic solutions for delay multispecies Logrithmic population model, J. Eng. Math., 19, 11
Zhou, 2007, On existence of periodic solutions of Rayleigh equation of retarded type, J. Comput. Appl. Math., 203, 1, 10.1016/j.cam.2006.03.002
Fang, 2001, On the existence of periodic solutions of a neutral delay model of single-species population growth, J. Math. Anal. Appl., 259, 8, 10.1006/jmaa.2000.7340
Yang, 2003, Sufficient conditions for the existence of positive periodic solutions of a class of neutral delays models, Appl. Math. Comput., 142, 123, 10.1016/S0096-3003(02)00288-6
Yang, 2004, Positive periodic solutions of neutral Lotka–Volterra system with periodic delays, Appl. Math. Comput., 149, 661, 10.1016/S0096-3003(03)00170-X
Li, 2000, On a periodic neutral delay Lotka–Volterra system, Nonlinear Anal., 39, 767, 10.1016/S0362-546X(98)00235-1
Chen, 2004, Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control, Appl. Math. Comput., 158, 45, 10.1016/j.amc.2003.08.063
Chen, 2005, Positive periodic solutions of neutral Lotka–Volterra system with feedback control, Appl. Math. Comput., 162, 1279, 10.1016/j.amc.2004.03.009
Fang, 2003, Positive periodic solutions of n-species neutral delay systems, Czech. Math. J., 53, 561, 10.1023/B:CMAJ.0000024503.03321.b1
Liu, 2004, Positive periodic solution for a neutral delay competitive system, J. Math. Anal. Appl., 293, 181, 10.1016/j.jmaa.2003.12.035
Raffoul, 2003, Periodic solutions for neutral nonlinear differential equations with functional delay, E.J.D.E., 2003, 1
Gopalsamy, 1985, A simple stability criterion for linear neutral differential systems, Funkcial Ekvac., 28, 33
Huo, 2004, Existence of positive periodic solutions of a neutral delay Loka–Volterra systems with impulses, Comput. Math. Appl., 48, 1833, 10.1016/j.camwa.2004.07.009
Xia, 2007, Positive periodic solutions for a neutral impulsive delayed Lotka–Volterra competition systems with the effect of toxic substance, Nonlinear Anal.: RWA, 8, 204, 10.1016/j.nonrwa.2005.07.002
Wang, 2008, Existence of positive periodic solutions for neutral population model with delays and impulse, Nonlinear Anal.: TMA, 69, 3919, 10.1016/j.na.2007.10.033
Chen, 2005, Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model, Appl. Math. Comput., 171, 760, 10.1016/j.amc.2005.01.085
Li, 1999, On a periodic neutral delay logarithmic population model, J. Syst. Sci. Math. Sci., 19, 34
Lu, 2004, Existence of positive periodic solutions for neutral logarithmic population model with multiple delays, J. Comput. Appl. Math., 166, 371, 10.1016/j.cam.2003.08.033
Chen, 2006, Periodic solutions and almost periodic solutions of a neutral multispecies Logarithmic population model, Appl. Math. Comput., 176, 431, 10.1016/j.amc.2005.09.032
R.E. Gaines, J.L. Mawhin, in: Lectures Notes in Mathematics, vol. 568, Springer-Verlag, Berlin, 1977.
Liu, 1997, Existence theorem for periodic solutions of higher order nonlinear differential equations, J. Math. Anal. Appl., 216, 481, 10.1006/jmaa.1997.5669
Lu, 2004, Existence of positive periodic solutions for neutral population model with multiple delays, Appl. Math. Comput., 153, 885, 10.1016/S0096-3003(03)00685-4
Chen, 2006, The permanence and global attractivity of Lotka–Volterra competition system with feedback controls, Nonlinear Anal.: Real World Appl., 7, 133, 10.1016/j.nonrwa.2005.01.006
Chen, 2006, Average conditions for permanence and extinction in nonautonomous Gilpin–Ayala competition model, Nonlinear Anal.: Real World Appl., 7, 895, 10.1016/j.nonrwa.2005.04.007
Chen, 2005, On a nonlinear nonautonomous predator–prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180, 33, 10.1016/j.cam.2004.10.001
Wang, 2008, Multiple periodic solutions of an impulsive predator–prey model with Holling IV functional response, Math. Comput. Model.