Existence and uniqueness of positive periodic solutions for a neutral Logarithmic population model

Applied Mathematics and Computation - Tập 213 - Trang 137-147 - 2009
Qi Wang1, Yue Wang1, Binxiang Dai2
1School of Mathematical Science, Anhui University, Hefei 230039, PR China
2School of Mathematical Science and Computing Technology, Central South University, Changsha 410075, PR China

Tài liệu tham khảo

Gopalsamy, 1992, vol. 74 Kirlinger, 1986, Permanence in Lotka–Volterra equations linked prey–predator systems, Math. Biosci., 82, 165, 10.1016/0025-5564(86)90136-7 Li, 1997, Attractivity of a positive periodic solution for all other positive solution in a delay population model, Appl. Math. -JCU, 12, 279 Liu, 2002, Positive periodic solutions for delay multispecies Logrithmic population model, J. Eng. Math., 19, 11 Zhou, 2007, On existence of periodic solutions of Rayleigh equation of retarded type, J. Comput. Appl. Math., 203, 1, 10.1016/j.cam.2006.03.002 Fang, 2001, On the existence of periodic solutions of a neutral delay model of single-species population growth, J. Math. Anal. Appl., 259, 8, 10.1006/jmaa.2000.7340 Yang, 2003, Sufficient conditions for the existence of positive periodic solutions of a class of neutral delays models, Appl. Math. Comput., 142, 123, 10.1016/S0096-3003(02)00288-6 Yang, 2004, Positive periodic solutions of neutral Lotka–Volterra system with periodic delays, Appl. Math. Comput., 149, 661, 10.1016/S0096-3003(03)00170-X Li, 2000, On a periodic neutral delay Lotka–Volterra system, Nonlinear Anal., 39, 767, 10.1016/S0362-546X(98)00235-1 Chen, 2004, Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control, Appl. Math. Comput., 158, 45, 10.1016/j.amc.2003.08.063 Chen, 2005, Positive periodic solutions of neutral Lotka–Volterra system with feedback control, Appl. Math. Comput., 162, 1279, 10.1016/j.amc.2004.03.009 Fang, 2003, Positive periodic solutions of n-species neutral delay systems, Czech. Math. J., 53, 561, 10.1023/B:CMAJ.0000024503.03321.b1 Liu, 2004, Positive periodic solution for a neutral delay competitive system, J. Math. Anal. Appl., 293, 181, 10.1016/j.jmaa.2003.12.035 Raffoul, 2003, Periodic solutions for neutral nonlinear differential equations with functional delay, E.J.D.E., 2003, 1 Gopalsamy, 1985, A simple stability criterion for linear neutral differential systems, Funkcial Ekvac., 28, 33 Huo, 2004, Existence of positive periodic solutions of a neutral delay Loka–Volterra systems with impulses, Comput. Math. Appl., 48, 1833, 10.1016/j.camwa.2004.07.009 Xia, 2007, Positive periodic solutions for a neutral impulsive delayed Lotka–Volterra competition systems with the effect of toxic substance, Nonlinear Anal.: RWA, 8, 204, 10.1016/j.nonrwa.2005.07.002 Wang, 2008, Existence of positive periodic solutions for neutral population model with delays and impulse, Nonlinear Anal.: TMA, 69, 3919, 10.1016/j.na.2007.10.033 Chen, 2005, Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model, Appl. Math. Comput., 171, 760, 10.1016/j.amc.2005.01.085 Li, 1999, On a periodic neutral delay logarithmic population model, J. Syst. Sci. Math. Sci., 19, 34 Lu, 2004, Existence of positive periodic solutions for neutral logarithmic population model with multiple delays, J. Comput. Appl. Math., 166, 371, 10.1016/j.cam.2003.08.033 Chen, 2006, Periodic solutions and almost periodic solutions of a neutral multispecies Logarithmic population model, Appl. Math. Comput., 176, 431, 10.1016/j.amc.2005.09.032 R.E. Gaines, J.L. Mawhin, in: Lectures Notes in Mathematics, vol. 568, Springer-Verlag, Berlin, 1977. Liu, 1997, Existence theorem for periodic solutions of higher order nonlinear differential equations, J. Math. Anal. Appl., 216, 481, 10.1006/jmaa.1997.5669 Lu, 2004, Existence of positive periodic solutions for neutral population model with multiple delays, Appl. Math. Comput., 153, 885, 10.1016/S0096-3003(03)00685-4 Chen, 2006, The permanence and global attractivity of Lotka–Volterra competition system with feedback controls, Nonlinear Anal.: Real World Appl., 7, 133, 10.1016/j.nonrwa.2005.01.006 Chen, 2006, Average conditions for permanence and extinction in nonautonomous Gilpin–Ayala competition model, Nonlinear Anal.: Real World Appl., 7, 895, 10.1016/j.nonrwa.2005.04.007 Chen, 2005, On a nonlinear nonautonomous predator–prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180, 33, 10.1016/j.cam.2004.10.001 Wang, 2008, Multiple periodic solutions of an impulsive predator–prey model with Holling IV functional response, Math. Comput. Model.