Riesz Potentials and Nonlinear Parabolic Equations
Tóm tắt
The spatial gradient of solutions to nonlinear degenerate parabolic equations can be pointwise estimated by the caloric Riesz potential of the right hand side datum, exactly as in the case of the heat equation. Heat kernels type estimates persist in the nonlinear case.
Tài liệu tham khảo
Acerbi E., Mingione G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136, 285–320 (2007)
Baroni, P.: New contributions to Nonlinear Calderón–Zygmund theory. Ph.D. Thesis, Scuola Normale Superiore, Pisa, 2012
Boccardo L., Dall’Aglio A., Gallouët T., Orsina L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 (1997)
Campanato S.: Equazioni paraboliche del secondo ordine e spazi \({{\mathfrak{L}}^{2, \theta} (\Omega, \delta)}\) . Ann. Mat. Pura Appl. (IV) 73, 55–102 (1966)
Cianchi A., Maz’ya V.: Global Lipschitz regularity for a class of quasilinear equations. Commun. PDE 36, 100–133 (2011)
DiBenedetto E.: On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scu. Norm. Sup. Pisa Cl. Sci. (IV) 13, 487–535 (1986)
DiBenedetto, E.: Degenerate parabolic equations. Universitext. Springer, New York, 1993
DiBenedetto E., Friedman A.: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Ang. Math. (Crelles J.) 357, 1–22 (1985)
Driver B.K., Gross L., Saloff-Coste L.: Holomorphic functions and subelliptic heat kernels over Lie groups. J. Eur. Math. Soc. 11, 941–978 (2009)
Duzaar F., Mingione G.: Gradient estimates via non-linear potentials. Am. J. Math. 133, 1093–1149 (2011)
Duzaar F., Mingione G.: Gradient estimates via linear and nonlinear potentials. J. Funct. Anal. 259, 2961–2998 (2010)
Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge, 2003
Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society/International Press, Providence/Boston
Havin M., Mazya V.G.: A nonlinear potential theory. Russ. Math. Surv. 27, 71–148 (1972)
Hedberg L.I., Wolff T.: Thin sets in nonlinear potential theory. Ann. Inst. Fourier (Grenoble) 33, 161–187 (1983)
Jin T., Mazya V., Van Schaftingen J.: Pathological solutions to elliptic problems in divergence form with continuous coefficients. C. R. Acad. Sci. Paris Ser. I 347, 773–778 (2009)
Kilpeläinen T., Malý J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann Scu. Norm. Sup. Pisa Cl. Sci. (V) 19, 591–613 (1992)
Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)
Kinnunen J., Lewis J.L.: Higher integrability for parabolic systems of p-Laplacian type. Duke Math. J. 102, 253–271 (2000)
Kinnunen J., Lewis J.L.: Very weak solutions of parabolic systems of p-Laplacian type. Ark. Mat. 40, 105–132 (2002)
Kinnunen J., Lukkari T., Parviainen M.: An existence result for superparabolic functions. J. Funct. Anal. 258, 713–728 (2010)
Kinnunen J., Lukkari T., Parviainen M.: Local approximation of superharmonic and superparabolic functions in nonlinear potential theory. J. Fixed Point Theory Appl. 13, 291–307 (2013)
Kuusi T., Mingione G.: Potential estimates and gradient boundedness for nonlinear parabolic systems. Rev. Mat. Iberoamericana 28, 535–576 (2012)
Kuusi T., Mingione G.: Nonlinear potential estimates in parabolic problems. Rend. Lincei - Mat. e Appl. 22, 161–174 (2011)
Kuusi, T., Mingione, G.: The Wolff gradient bound for degenerate parabolic equations. J. Eur. Math. Soc. (to appear)
Kuusi, T., Mingione, G.: Gradient regularity for nonlinear parabolic equations. Ann Scu. Norm. Sup. Pisa Cl. Sci. (V) (to appear)
Kuusi T., Mingione G.: A surprising linear type estimate for nonlinear elliptic equations. C. R. Acad. Sci. Paris Ser. I 349, 889–892 (2011)
Kuusi T., Mingione G.: Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207, 215–246 (2013)
Kuusi T., Mingione G.: New perturbation methods for nonlinear parabolic problems. J. Math. Pures Appl. (IX) 98, 390–427 (2012)
Kuusi, T., Mingione, G.: Guide to nonlinear potential estimates. Bull. Math. Sci. (to appear)
Lindqvist P., Manfredi J.J.: Note on a remarkable superposition for a nonlinear equation. Proc. AMS 136, 133–140 (2008)
Mingione G.: The Calderón–Zygmund theory for elliptic problems with measure data. Ann Scu. Norm. Sup. Pisa Cl. Sci. (V) 6, 195–261 (2007)
Mingione G.: Gradient potential estimates. J. Eur. Math. Soc. 13, 459–486 (2011)
Phuc N.C., Verbitsky I. E.: Quasilinear and Hessian equations of Lane–Emden type. Ann. Math. (II) 168, 859–914 (2008)
Phuc N.C., Verbitsky I.E.: Singular quasilinear and Hessian equations and inequalities. J. Funct. Anal. 256, 1875–1906 (2009)
Saloff-Coste L.: The heat kernel and its estimates. Probabilistic Approach to Geometry, Advanced Studies in Pure Mathematics, Vol. 57. Mathematical Society of Japan, Tokyo, 405–436, 2010
Stein E.M.: Editor’s note: the differentiability of functions in \({\mathbb{R}^n}\) . Ann. Math. (II) 113, 383–385 (1981)
Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, Vol. 43. Princeton University Press, Princeton, 1993
Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, Vol. 32. Princeton University Press, Princeton, 1971
Trudinger N.S., Wang X.J.: On the weak continuity of elliptic operators and applications to potential theory. Am. J. Math. 124, 369–410 (2002)
Urbano, J.M.: The Method of Intrinsic Scaling. A Systematic Approach to Regularity for Degenerate and Singular PDEs. Lecture Notes in Mathematics, Vol. 1930. Springer, Berlin, 2008