Non-destructive Characterization of Skeletal Muscle Extracellular Matrix Morphology by Combining Optical Coherence Tomography (OCT) Imaging with Tissue Clearing

Springer Science and Business Media LLC - Tập 51 - Trang 2323-2336 - 2023
Maxence Maillet1, Malek Kammoun1, Stéphane Avril2, Marie-Christine Ho Ba Tho1, Olfa Trabelsi1
1Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne Cedex, France
2Mines Saint-Etienne, Univ Jean Monnet Saint-Etienne, Inserm, Saint-Etienne, France

Tóm tắt

Histology is an essential step to visualize and analyze the microstructure of any biological tissue; however, histological processing is often irreversible, and histological samples are unable to be imaged or tested further. In this work, a novel non-destructive protocol is proposed for morphological analysis of skeletal muscles, combining Optical Coherence Tomography (OCT) imaging with Tissue Clearing. Imaging combining OCT and Propylene Glycol (PG) as a tissue-clearing agent, was performed on rat tail and extensor digitorum longus (EDL) muscle. The results show that the extracellular matrix morphology of skeletal muscles, including muscular fibers and the whole microstructure architecture were clearly identified. PG improved OCT imaging as measured by image quality metric Contrast Per Pixel CPP (increases by 3.9%), Naturalness Image Quality Evaluator NIQE (decreases by 23%), and Volume of Interest VOI size (higher for CPP and lower for NIQE values). The tendon microstructure was observed with less precision, as collagen fibers could not be clearly detected. The reversibility of the optical effects of the PG on the immersed tissue (in a Phosphate-Buffered Saline solution) was studied comparing native and rehydrated OCT image acquisition from a single EDL sample. Optical properties and microstructure visibility (CPP and NIQE) have been recovered to 99% of the native sample values. Moreover, clearing process caused shrinkage of the tissue recovered to 86% of the original width. Future work will aim to employ the proposed experimental protocol to identify the local mechanical properties of biological tissues.

Tài liệu tham khảo

Acosta Santamaría, V. A., M. Flechas García, J. Molimard, and S. Avril. Three-dimensional full-field strain measurements across a whole porcine aorta subjected to tensile loading using optical coherence tomography–digital volume correlation. Front. Mech. Eng. 4:1–14, 2018. Acosta Santamaría, V. A., M. F. García, J. Molimard, and S. Avril. Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography. Acta Biomater. 102:127–137, 2020. Alarousu, E. Low coherence interferometry and optical coherence tomography in paper measurements. 2006, p. 74. Al-Mujaini, A., U. K. Wali, and S. Azeem. Optical coherence tomography: clinical applications in medical practice. Oman Med. J. 28:86–91, 2013. An, J. Y., J. X. Zheng, J. Y. Li, D. Zeng, L. J. Qu, G. Y. Xu, and N. Yang. Effect of myofiber characteristics and thickness of perimysium and endomysium on meat tenderness of chickens. Poultry Sci. 89:1750–1754, 2010. Bradley, D., and G. Roth. Adaptive thresholding using the integral image. J. Graph. Tools. 12:13–21, 2007. Bykov, A., T. Hautala, M. Kinnunen, A. Popov, S. Karhula, S. Saarakkala, M. T. Nieminen, V. Tuchin, and I. Meglinski. Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage. J. Biophotonics. 9:270–275, 2016. Chin, L., B. F. Kennedy, K. M. Kennedy, P. Wijesinghe, G. J. Pinniger, J. R. Terrill, R. A. McLaughlin, and D. D. Sampson. Three-dimensional optical coherence micro-elastography of skeletal muscle tissue. Biomed. Opt. Express. 5:3090, 2014. Cicchi, R., F. S. Pavone, D. Massi, and D. D. Sampson. Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents. Opt. Express. 13:2337, 2005. De Boer, J. F., S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson. Polarization effects in optical coherence tomography of various biological tissues. IEEE J. Sel. Top. Quantum Electron. 5:1200–1204, 1999. Delp, M. D., and C. Duan. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J. Appl. Physiol. 80:261–270, 1996. Eramian, M., and D. Mould. Histogram equalization using neighborhood metrics. Proc.—2nd Can. Conf. Comput. Robot Vision, CRV 2005 397–404, 2005. https://doi.org/10.1109/CRV.2005.47 Fu, J., F. Pierron, and P. D. Ruiz. Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation. J. Biomed. Opt. 18:121512, 2013. https://doi.org/10.1117/1.JBO.18.12.121512. Fujimoto, J. G., C. Pitris, S. A. Boppart, and M. E. Brezinski. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2:9–25, 2000. Gaoa, Y., T. Y. Kostrominova, J. A. Faulkner, and A. S. Wineman. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J. Biomech. 41:465–469, 2008. Genina, E. A., A. N. Bashkatov, E. A. Kolesnikova, M. V. Basko, G. S. Terentyuk, and V. V. Tuchin. Optical coherence tomography monitoring of enhanced skin optical clearing in rats in vivo. J. Biomed. Opt. 19:021109, 2013. Genina, E. A., A. N. Bashkatov, M. D. Kozintseva, and V. V. Tuchin. OCT study of optical clearing of muscle tissue in vitro with 40% glucose solution. Opt. Spectrosc. 120:20–27, 2016. Genina, E. A., A. N. Bashkatov, and V. V. Tuchin. Optical clearing of cranial bone. Adv. Opt. Technol. 2008, 2008. Genina, E. A., A. N. Bashkatov, and V. V. Tuchin. Tissue optical immersion clearing. Expert Rev. Med. Devices. 7:825–842, 2010. Genina, E. A., A. N. Bashkatov, D. K. Tuchina, P. A. Timoshina, and V. V. Tuchin. Kinetics of rat skin optical clearing at topical application of 40%-glucose: ex vivo and in vivo studies. IEEE J. Sel. Top. Quantum Electron. 25:21–23, 2019. Guo, X., Z. Guo, H. Wei, H. Yang, Y. He, S. Xie, G. Wu, X. Deng, Q. Zhao, and L. Li. In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography. Photochem. Photobiol. 87:734–740, 2011. Hendon, C. P., T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe. Optical coherence tomography imaging of cardiac substrates. Quant. Imaging Med. Surg. 9:882–904, 2019. Kammoun, M., I. Cassar-Malek, B. Meunier, and B. Picard. A simplified immunohistochemical classification of skeletal muscle fibres in mouse. Eur. J. Histochem. 58:163–168, 2014. Khan, M. H., B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson. Optical clearing of in vivo human skin: implications for light-based diagnostic imaging and therapeutics [2]. Lasers Surg. Med. 34:83–85, 2004. Klyen, B. R., J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson. Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice. J. Biomed. Opt. 13:011003, 2008. Klyen, B. R., L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson. Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient. Biomed. Opt. Express. 5:1217–1232, 2014. Klyen, B. R., T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography. J. Biomed. Opt. 16:076013, 2011. Lovering, R. M., S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen. Architecture of healthy and dystrophic muscles detected by optical coherence tomography. Muscle Nerve. 47:588–590, 2013. Mittal, A., A. K. Moorthy, and A. C. Bovik. Blind/referenceless image spatial quality evaluation engine. Present. 45th Asilomar Conf. Signals, Syst. Comput. 723–727, 2011. Mittal, A., A. K. Moorthy, and A. C. Bovik. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21:4695–4708, 2012. Mittal, A., R. Soundararajan, and A. C. Bovik. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20:209–212, 2013. Oliveira, L. M., M. I. Carvalho, E. M. Nogueira, and V. V. Tuchin. The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23:075606, 2013. Oliveira, L., M. I. Carvalho, E. Nogueira, and V. V. Tuchin. Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose. J. Innov. Opt. Health Sci. 6:1350012, 2013. Oliveira, L. M., M. I. Carvalho, E. M. Nogueira, and V. V. Tuchin. Errata: diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20:059801, 2015. Oliveira, L., M. I. Carvalho, E. Nogueira, and V. V. Tuchin. Optical clearing mechanisms characterization in muscle. J. Innov. Opt. Health Sci. 9:1–19, 2016. Oliveira, L. M., M. I. Carvalho, E. M. Nogueira, and V. V. Tuchin. Skeletal muscle dispersion (400–1000 nm) and kinetics at optical clearing. J. Biophotonics. 11:1–12, 2018. Oliveira, L., A. Lage, M. Pais Clemente, and V. Tuchin. Optical characterization and composition of abdominal wall muscle from rat. Opt. Lasers Eng. 47:667–672, 2009. Palanca, M., G. Tozzi, and L. Cristofolini. The use of digital image correla-tion in the biomechanical area: a review. Int. Biomech. 3:1–21, 2016. https://doi.org/10.1080/23335432.2015.1117395. Pasquesi, J. J., S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart. In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Opt. Express. 14:1547–1556, 2006. Plotnikov, S., V. Juneja, A. B. Isaacson, W. A. Mohler, and P. J. Campagnola. Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys. J. 90:328–339, 2006. Proskurin, S. G., and I. V. Meglinski. Optical coherence tomography imaging depth enhancement by superficial skin optical clearing. Laser Phys. Lett. 4:824–826, 2007. Rowe, R. W. D. The structure of rat tail tendon. Connect. Tissue Res. 14:9–20, 1985. Tuchin, V. V., G. B. Altshuler, A. A. Gavrilova, A. B. Pravdin, D. Tabatadze, J. Childs, and I. V. Yaroslavsky. Optical clearing of skin using flashlamp-induced enhancement of epidermal permeability. Lasers Surg. Med. 38:824–836, 2006. Tuchina, D. K., A. N. Bashkatov, E. A. Genina, and V. V. Tuchin. Quantification of glucose and glycerol diffusion in myocardium. J. Innov. Opt. Health Sci. 8:1–10, 2015. Venkatanath, N., D. Praneeth, B. H. Maruthi Chandrasekhar, S. S. Channappayya, and S. S. Medasani. Blind image quality evaluation using perception based features. 2015 21st Natl. Conf. Commun. NCC 2015 , 2015.https://doi.org/10.1109/NCC.2015.7084843 Wang, R. K. Tissue clearing as a tool to enhance imaging capability for optical coherence tomography. Coherence Domain Opt. Methods Biomed. Sci. Clin. Appl. VI 4619:22, 2002. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13:600–612, 2004. Wang, R. K., and J. B. Elder. Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissues. Lasers Surg. Med. 30:201–208, 2002. Wang, S., and K. V. Larin. Optical coherence elastography for tissue characterization: a review. J. Biophotonics. 8:279–302, 2015. Wang, Y., K. Zhang, N. B. Wasala, D. Duan, and G. Yao. Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy. Biomed. Opt. Express. 6:347, 2015. Wells, P. B., A. T. Yeh, and J. Humphrey. Influence of glycerol on the mechanical reversibility and thermal damage susceptibility of collagenous tissue. IEEE Trans. Biomed. Eng. 53:747–753, 2006. Xu, X., Q. Zhu, and C. Sun. Assessment of the effects of ultrasound-mediated alcohols on skin optical clearing. J. Biomed. Opt. 14:034042, 2009. Yang, X., L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson. Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography. J. Appl. Physiol. 115:1393–1401, 2013. Yang, V. B., D. A. Curtis, and D. Fried. Use of optical clearing agents for imaging root surfaces with optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 25:1–7, 2019. Yeh, A. T., B. Choi, J. S. Nelson, and B. J. Tromberg. Reversible dissociation of collagen in tissues. J. Invest. Dermatol. 121:1332–1335, 2003. Yeh, A. T., and J. Hirshburg. Molecular interactions of exogenous chemical agents with collagen—implications for tissue optical clearing. J. Biomed. Opt. 11:014003, 2006. Zysk, A. M., F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart. Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12:051403, 2007.