Parseval wavelets on hierarchical graphs
Tài liệu tham khảo
Sandryhaila, 2013, Discrete signal processing on graphs, IEEE Trans. Signal Process., 61, 1644, 10.1109/TSP.2013.2238935
Chung, 1997
Taubin, 1996
Pesenson, 2010, Sampling, filtering and sparse approximations on combinatorial graphs, J. Fourier Anal. Appl., 16, 921, 10.1007/s00041-009-9116-7
Narang, 2011, Downsampling graphs using spectral theory, 4208
Mallat, 2008
Coifman, 2006, Diffusion wavelets, Appl. Comput. Harmon. Anal., 21, 53, 10.1016/j.acha.2006.04.004
Maggioni, 2008, Diffusion polynomial frames on metric measure spaces, Appl. Comput. Harmon. Anal., 24, 329, 10.1016/j.acha.2007.07.001
Hammond, 2011, Wavelets on graphs via spectral graph theory, Appl. Comput. Harmon. Anal., 30, 129, 10.1016/j.acha.2010.04.005
Murtagh, 2007, The Haar wavelet transform of a dendrogram, J. Classification, 24, 3, 10.1007/s00357-007-0007-9
Lee, 2008, Treelets: an adaptive multi-scale basis for sparse unordered data, Ann. Appl. Stat., 2, 437
Gavish, 2010, Multiscale wavelets on trees, graphs and high dimensional data: theory and applications to semi supervised learning
Ram, 2011, Generalized tree-based wavelet transform, IEEE Trans. Signal Process., 59, 4199, 10.1109/TSP.2011.2158428
Nakahira, 2014, Multi-link wavelets on hierarchical graphs, Appl. Comput. Harmon. Anal., 37, 1, 10.1016/j.acha.2013.08.007
Rustamov
Rustamov, 2013, Wavelets on graphs via deep learning, 998
Coifman, 1995, Translation-invariant de-noising, 125
Akhiezer, 1966
Narang, 2012, Perfect reconstruction two-channel wavelet filter banks for graph structured data, IEEE Trans. Signal Process., 60, 2786, 10.1109/TSP.2012.2188718
Shuman, 2013, Spectrum-adapted tight graph wavelet and vertex-frequency frames, IEEE Trans. Signal Process., 63, 4223, 10.1109/TSP.2015.2424203
Dunn, 1973, A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters, J. Cybern., 3, 32, 10.1080/01969727308546046
Bezdek, 1984, Fcm: the fuzzy c-means clustering algorithm, Comput. Geosci., 10, 191, 10.1016/0098-3004(84)90020-7
Mashor, 2000, Hybrid training algorithm for rbf network, Int. J. Comput., Internet Manag., 8, 50
Xu, 2005, Survey of clustering algorithms, IEEE Trans. Neural Netw., 16, 645, 10.1109/TNN.2005.845141
Luxburg, 2007, A tutorial on spectral clustering, Stat. Comput., 17, 395, 10.1007/s11222-007-9033-z
Murtagh, 2012, Algorithms for hierarchical clustering: an overview, Wiley Interdiscip. Rev.: Data Min. Knowl. Discov., 2, 86
Cai, 2014, Data-driven tight frame construction and image denoising, Appl. Comput. Harmon. Anal., 37, 89, 10.1016/j.acha.2013.10.001
Fan, 1949, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Natl. Acad. Sci. USA, 35, 652, 10.1073/pnas.35.11.652
Manton, 2002, Optimization algorithms exploiting unitary constraints, IEEE Trans. Signal Process., 50, 635, 10.1109/78.984753
Georghiades, 2001, From few to many: illumination cone models for face recognition under variable lighting and pose, IEEE Trans. Pattern Anal. Mach. Intell., 23, 643, 10.1109/34.927464
National Climatic Data Center
Shuman, 2013, The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., 30, 83, 10.1109/MSP.2012.2235192
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58, 267
Beck, 2009, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 183, 10.1137/080716542
Mac Lane, 1998
Awodey, 2006
Gibbons, 1995, An initial-algebra approach to directed acyclic graphs, 282
Trinder, 1998, Algorithm+strategy=parallelism, J. Funct. Programming, 8, 23, 10.1017/S0956796897002967
Erwig, 1999, Categorical programming with abstract data types, 406