A conservative phase field method for solving incompressible two-phase flows

Journal of Computational Physics - Tập 230 - Trang 185-204 - 2011
Pao-Hsiung Chiu1, Yan-Ting Lin1
1Nuclear Engineering Division, Institute of Nuclear Energy Research, Taoyuan County, Taiwan, Republic of China

Tài liệu tham khảo

Anderson, 1985, A vortex method for flows with slight density variations, J. Comput. Phys., 61, 417, 10.1016/0021-9991(85)90073-7 Boultone-Stone, 1993, Gas bubbles bursting at a free surface, J. Fluid Mech., 254, 437, 10.1017/S0022112093002216 Hirt, 1981, Volume of fluid method (VOF) for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5 Unverdi, 1992, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25, 10.1016/0021-9991(92)90307-K Sussman, 1997, Axisymmetric free boundary problems, J. Fluid Mech., 341, 269, 10.1017/S0022112097005570 Sethian, 2003, Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 341, 10.1146/annurev.fluid.35.101101.161105 Sussman, 2000, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 301, 10.1006/jcph.2000.6537 Xiao, 2005, A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Meth. Fluid, 48, 1023, 10.1002/fld.975 Yokoi, 2007, Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm, J. Comput. Phys., 226, 1985, 10.1016/j.jcp.2007.06.020 Sun, 2010, A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows, Int. J. Heat Mass Transfer, 53, 645, 10.1016/j.ijheatmasstransfer.2009.10.030 Olsson, 2005, A conservative level set method for two phase flow, J. Comput. Phys., 210, 225, 10.1016/j.jcp.2005.04.007 Anderson, 1998, Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30, 139, 10.1146/annurev.fluid.30.1.139 Badalassi, 2003, Computation of multiphase systems with phase field models, J. Comput. Phys., 190, 371, 10.1016/S0021-9991(03)00280-8 Kim, 2005, A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys., 204, 784, 10.1016/j.jcp.2004.10.032 Sun, 2007, Sharp interface tracking using the phase-field equation, J. Comput. Phys., 220, 626, 10.1016/j.jcp.2006.05.025 Ding, 2007, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226, 2078, 10.1016/j.jcp.2007.06.028 Cahn, 1958, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102 Allen, 1976, Mechanisms of phase transformations within the miscibility gap of Fe-Rich Fe-Al alloys, Acta Metall., 24, 425, 10.1016/0001-6160(76)90063-8 Furihata, 2001, A stable and conservative finite difference scheme for the Cahn–Hilliard equation, Numer. Math., 87, 675, 10.1007/PL00005429 Boettinger, 2002, Phase-field simulation of solidification, Ann. Rev. Mater. Res., 32, 163, 10.1146/annurev.matsci.32.101901.155803 Folch, 1999, Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast I. Theoretical approach, Phys. Rev. E., 60, 1724, 10.1103/PhysRevE.60.1724 Chiu, 2009, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation, J. Comput. Phys., 228, 3640, 10.1016/j.jcp.2009.02.008 Chu, 1998, A three-point combined compact difference scheme, J. Comput. Phys., 140, 370, 10.1006/jcph.1998.5899 Brackbill, 1992, A continuum method for modeling surface tension, J. Comput. Phys., 100, 335, 10.1016/0021-9991(92)90240-Y Williams, 1998, Accuracy and convergence of continuum surface-tension models, 294 Golub, 1998, A fast Poisson solver for the finite difference solution of the incompressible Navier–Stokes equation, SIAM J. Sci. Comput., 19, 1606, 10.1137/S1064827595285299 Tam, 1993, Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107, 262, 10.1006/jcph.1993.1142 Chiu, 2005, Development of a dispersion-relation-preserving upwinding scheme for incompressible Navier–Stokes equations on non-staggered grids, Numer. Heat Transfer B Fundam., 48, 543, 10.1080/10407790500315688 Leray, 1934, Essai sur le mouvement dun fluid visqueux emplissant lspace, Acat Math., 63, 193, 10.1007/BF02547354 Rider, 1998, Reconstructing volume tracking, J. Comput. Phys., 141, 112, 10.1006/jcph.1998.5906 Zalesak, 1979, Fully multi-dimensional flux corrected transport algorithm for fluid flow, J. Comput. Phys., 31, 335, 10.1016/0021-9991(79)90051-2 Martin, 1952, An experimental study of the collapse of fluid columns on a rigid horizontal plane, Philos. Trans. Roy. Soc. Lond.: Ser. A, 244, 312, 10.1098/rsta.1952.0006 Guermond, 2000, A projection FEM for variable density incompressible flows, J. Comput. Phys., 165, 167, 10.1006/jcph.2000.6609 Brereton, 1991, Coaxial and oblique coalescence of two rising bubbles, AMD-Vol. 119 Harlow, 1967, The splash of a liquid drop, J. Appl. Phys., 38, 3855, 10.1063/1.1709031 Rieber, 1999, A numerical study on the mechanism of splashing, Int. J. Heat Fluid Flow, 20, 453, 10.1016/S0142-727X(99)00033-8 Xiao, 2005, Numerical simulations of free-interface fluids by a multi integrated moment method, Comput. Struct., 83, 409, 10.1016/j.compstruc.2004.06.005 Yokoi, 2008, A numerical method for free-surface flows and its application to droplet impact on a thin liquid layer, J. Sci. Comput., 35, 372, 10.1007/s10915-008-9202-z