A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation
Tài liệu tham khảo
Lloyd-Jones, 2004, Lifetime risk for development of atrial fibrillation: the Framingham Heart Study, Circulation, 110, 1042, 10.1161/01.CIR.0000140263.20897.42
Nattel, 2002, New ideas about atrial fibrillation 50 years on, Nature, 415, 219, 10.1038/415219a
Chugh, 2001, Epidemiology and natural history of atrial fibrillation: clinical implications, J. Am. Coll. Cardiol., 37, 371, 10.1016/S0735-1097(00)01107-4
Ryder, 1999, Epidemiology and significance of atrial fibrillation, Am. J. Cardiol., 84, R131, 10.1016/S0002-9149(99)00713-4
Darbar, 2003, Familial atrial fibrillation is a genetically heterogeneous disorder, J. Am. Coll. Cardiol., 41, 2185, 10.1016/S0735-1097(03)00465-0
Chen, 2003, KCNQ1 gain-of-function mutation in familial atrial fibrillation, Science, 299, 251, 10.1126/science.1077771
Yang, 2004, Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation, Am. J. Hum. Genet., 75, 899, 10.1086/425342
Brugada, 1997, Identification of a genetic locus for familial atrial fibrillation, N. Engl. J. Med., 336, 905, 10.1056/NEJM199703273361302
Ellinor, 2003, Locus for atrial fibrillation maps to chromosome 6q14-16, Circulation, 107, 2880, 10.1161/01.CIR.0000077910.80718.49
Oberti, 2004, Genome-wide linkage scan identifies a novel genetic locus on chromosome 5p13 for neonatal atrial fibrillation associated with sudden death and variable cardiomyopathy, Circulation, 110, 3753, 10.1161/01.CIR.0000150333.87176.C7
Dobrev, 2001, Molecular basis of downregulation of G-protein-coupled inward rectifying K(+) current Ik-ACh in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced Ik-ACh and muscarinic receptor-mediated shortening of action potentials, Circulation, 104, 2551, 10.1161/hc4601.099466
Dobrev, 2002, Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation, Cardiovasc. Res., 54, 397, 10.1016/S0008-6363(01)00555-7
Van Wagoner, 1997, Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation, Circ. Res., 80, 772, 10.1161/01.RES.80.6.772
Van Wagoner, 2003, Electrophysiological remodeling in human atrial fibrillation, Pacing Clin. Electrophysiol., 26, 1572, 10.1046/j.1460-9592.2003.t01-1-00234.x
Bosch, 1999, Ionic mechanisms of electrical remodeling in human atrial fibrillation, Cardiovasc. Res., 44, 121, 10.1016/S0008-6363(99)00178-9
Lopatin, 2001, Inward rectifiers in the heart: an update on I(K1), J. Mol. Cell. Cardiol., 33, 625, 10.1006/jmcc.2001.1344
Zobel, 2003, Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes: evidence for heteromeric coassembly of Kir2.1 and Kir2.2, J. Physiol., 550, 365, 10.1113/jphysiol.2002.036400
Andersen, 1971, Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome?, Acta Paediatr. Scand., 60, 559, 10.1111/j.1651-2227.1971.tb06990.x
Zaritsky, 2001, The consequences of disrupting cardiac inwardly rectifying K+ current (IK1) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes, J. Physiol., 553, 697, 10.1111/j.1469-7793.2001.t01-1-00697.x
Li, 2004, Transgenic upregulation of IK1 in the mouse heart leads to multiple abnormalities of cardiac excitability, Am. J. Physiol. Heart Circ. Physiol., 287, H2790, 10.1152/ajpheart.00114.2004
Guo, 2002, A role for the middle C terminus of G-protein-activated inward rectifier potassium channels in regulating gating, J. Biol. Chem., 277, 48289, 10.1074/jbc.M207987200
Plaster, 2001, Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome, Cell, 105, 511, 10.1016/S0092-8674(01)00342-7
Bendahhou, 2003, Defective potassium channel Kir2.1 trafficking underlies Andersen–Tawil syndrome, J. Biol. Chem., 278, 51779, 10.1074/jbc.M310278200
Tristani-Firouzi, 2002, Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome), J. Clin. Invest., 110, 381, 10.1172/JCI15183
Ho, 1993, Cloning and expression of an inwardly rectifying ATP-regulated potassium channel, Nature, 362, 31, 10.1038/362031a0
Fodstad, 2004, Loss-of-function mutations of the K(+) channel gene KCNJ2 constitute a rare cause of long QT syndrome, J. Mol. Cell. Cardiol., 37, 593, 10.1016/j.yjmcc.2004.05.011
Shimoni, 1992, Role of an inwardly rectifying potassium current in rabbit ventricular action potential, J. Physiol., 448, 709, 10.1113/jphysiol.1992.sp019066
Kubo, 1993, Primary structure and functional expression of a mouse inward rectifier potassium channel, Nature, 362, 127, 10.1038/362127a0
Jongsma, 2001, Channelopathies: Kir2.1 mutations jeopardize many cell functions, Curr. Biol., 11, R747, 10.1016/S0960-9822(01)00437-7
Anumonwo, 2004, Biophysic properties of inward rectifier potassium channels, 112
Dhamoon, 2004, Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current, Circ. Res., 94, 1332, 10.1161/01.RES.0000128408.66946.67
Wible, 1995, Cloning and functional expression of an inwardly rectifying K+ channel from human atrium, Circ. Res., 76, 343, 10.1161/01.RES.76.3.343
Cabo, 2002, Computation of the action potential of a cardiac cell, 61
Hong, 2005, Short QT syndrome and atrial fibrillation caused by mutation in KCNH2, J. Cardiovasc. Electrophysiol., 16, 394, 10.1046/j.1540-8167.2005.40621.x