Quantum Speed Limit Time of Topological Qubits Influenced by the Fermionic and Bosonic Environments

Brazilian Journal of Physics - Tập 52 - Trang 1-6 - 2022
Fatemeh Ahmadi1, Soroush Haseli2, Maryam Hadipour3, Sara Heshmatian1, Hazhir Dolatkhah4, Shahriar Salimi5
1Department of Engineering Science and Physics, Buien Zahra Technical University, Buin Zahra, Qazvin, Iran
2Faculty of Physics, Urmia University of Technology, Urmia, Iran
3Department of Physics, Ahwaz Branch, Islamic Azad University, Ahvaz, Iran
4RCQI, Institute of physics, Slovak Academy of Sciences, Bratislava, Slovakia
5Department of Physics, University of Kurdistan, Sanandaj, Iran

Tóm tắt

Quantum theory sets a bound on the minimum time required to transform from an initial state to a target state. The bound is known as quantum speed limit time. Quantum speed limit time can be used to determine the rate of quantum evolution for closed and open quantum systems. In the real world, we are dealing with open quantum systems. So, the study of quantum speed limit time for open quantum systems has particular importance. In this work, we consider the topological qubit realized by two Majorana modes. We consider the case in which the topological qubit is influenced by the fermionic and bosonic environment. Fermionic and bosonic environments are assumed to have Ohmic-like spectral density. The quantum speed limit time is investigated for the various environments with different Ohmic parameters. It is observed that for the super-Ohmic environment with increasing Ohmic parameter the quantum speed limit time gradually reaches a constant value and so the speed of evolution reaches a uniform value. It is also observed that the quantum speed limit time reaches zero value by increasing initial time parameter for small value of Ohmic parameter while it reaches constant value for larger Ohmic parameter. The effects of the external magnetic field on the quantum speed limit time are also studied. It is observed that with increasing magnitude of the magnetic field, the quantum speed limit time decreases.

Tài liệu tham khảo

J.D. Bekenstein, Phys. Rev. Lett. 46, 623–626 (1981) V. Giovanetti, S. Lloyd, L. Maccone, Nat. Photonics 5, 222–229 (2011) S. Lloyd, Phys. Rev. Lett. 88, 237901 (2002) T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, G.E. Santoro, Phys. Rev. Lett. 103, 240501 (2009) A. Uhlmann, Phys. Lett. A 161, 329 (1992) P. Pfeifer, Phys. Rev. Lett. 70, 3365 (1993) V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. A 67, 052109 (2003) P. Pfeifer, J. Fröhlich, Rev. Mod. Phys. 67(759–779)(1995) H.F. Chau, Phys. Rev. A 81, 062133 (2010) S. Deffner, E. Lutz, J. Phys. A Math. Theor. 46, 335302 (2013) L. Mandelstam, I. Tamm, J. Phys. (USSR) 9, 249–254 (1945) N. Margolus, L.B. Levitin, Phys. D 120, 188–195 (1998) E.B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976) R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, vol. 286 (Springer, Berlin, 1987) H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002) T. Fogarty, S. Deffner, T. Busch, S. Campbell, Phys. Rev. Lett. 124, 110601 (2020) O. Lychkovskiy, O. Gamayun, V. Cheianov, Phys. Rev. Lett. 119, 200401 (2017) R. Puebla, S. Deffner, S. Campbell, Phys. Rev. Research 2, 032020 (2020) P. M. Poggi, arXiv:2002.11147 (2020) F. Campaioli, W. Sloan, K. Modi, F.A. Pollock, Phys. Rev. A 100, 062328 (2019) D.P. Pires, M. Cianciaruso, L.C. Celeri, G. Adesso, D.O. Soares-Pinto, Phys. Rev. X 6, 021031 (2016) M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. De Matos Filho, Phys. Rev. Lett. 110 (2013) A. del Campo, I.L. Egusquiza, M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 110, 050403 (2013) S. Deffner, E. Lutz, Phys. Rev. Lett. 111, 010402 (2013) Z. Sun, J. Liu, J. Ma, X. Wang, Sci. Rep. 5, 8444 (2015) D. Mondal, C. Datta, S. Sazim, Phys. Lett. A 380, 689 (2016) P.J. Jones, P. Kok, Phys. Rev. A 82, 022107 (2010) Y.J. Zhang, W. Han, Y.J. Xia, J.P. Cao, H. Fan, Sci. Rep. 4, 4890 (2014) N. Mirkin, F. Toscano, D.A. Wisniacki, Phys. Rev. A 94(2016) R. Uzdin, R. Kosloff, EPL (Europhysics Letters) 115, 40003 (2016) L. Zhang, Y. Sun, S. Luo, Phys. Lett. A 382, 2599–2604 (2018) J. Teittinen, H. Lyyra, S. Maniscalco, New J. Phys. 21, 123041 (2019) A. Ektesabi, N. Behzadi, E. Faizi, Phys. Rev. A 95, 022115 (2017) X. Cai, Y. Zheng, Phys. Rev. A 95, 052104 (2017) S. Deffner, New J. Phys. 19, 103018 (2017) S.-X. Wu, C.-S. Yu, Phys. Rev. A 98, 042132 (2018) K. Funo, N. Shiraishi, K. Saito, New J. Phys. 21, 013006 (2019) D.C. Brody, B. Longstaff, Phys. Rev. Research 033127(2019) F. Campaioli, F.A. Pollock, K. Modi, Quantum 3, 168 (2019) T. Van Vu and Y. Hasegawa, (2020), arXiv:2005.02871 F. Campaioli, C.-s. Yu, F. A. Pollock, and K. Modi, (2020), arXiv:2004.03078 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008) L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008) M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011) F. Wilczek, Nat. Phys. 5, 614 (2009) D. Arovas, J.R. Schrieffer, F. Wilczek, Phys. Rev. Lett. 53, 722 (1984) D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001) S.H. Ho, S.P. Chao, C.H. Chou, F.L. Lin, New J. Phys. 16, 113062 (2014) C. Addis, G. Brebner, P. Haikka, S. Maniscalco, Phys. Rev. A 89, 024101 (2014)