An Electrochemical Sensor based on p-aminothiophenol/Au Nanoparticle-Decorated H TiS2 Nanosheets for Specific Detection of Picomolar Cu (II)
Tài liệu tham khảo
Ocana, 2013, Label-free selective impedimetric detection of Cu2+ ions using catalytic DNA, Analyst, 138, 1995, 10.1039/c3an36778a
Cui, 2015, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials, Biosens. Bioelectron., 63, 276, 10.1016/j.bios.2014.07.052
Shao, 2013, Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface, Anal. Chem., 85, 418, 10.1021/ac303113n
Chen, 2013, Nanomaterials based electrochemical sensors for biomedical applications, Chem. Soc. Rev., 42, 5425, 10.1039/c3cs35518g
Zhang, 2015, A selective and accurate ratiometric electrochemical biosensor for monitoring of Cu2+ ions in a rat brain, Anal. Chem., 87, 2931, 10.1021/ac504448m
Wei, 2012, SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II): an interesting favorable mutual interference, J. Phys. Chem. C, 116, 1034, 10.1021/jp209805c
Gan, 2015, Three-dimensional porous HxTiS2 nanosheet-polyaniline nanocomposite electrodes for directly detecting trace Cu (II) Ions, Anal. Chem., 87, 5605, 10.1021/acs.analchem.5b00500
Zhao, 2010, Poly(2-amino-4-thiazoleacetic acid)/multiwalled carbon nanotubes modified glassy carbon electrodes for the electrochemical detection of copper (II), Electrochim. Acta, 55, 2518, 10.1016/j.electacta.2009.12.008
Gao, 2015, Graphene-DNAzyme junctions: a platform for direct metal ion detection with ultrahigh sensitivity, Chem. Sci., 6, 2469, 10.1039/C4SC03612C
Chen, 2011, Electrochemical aptasensor for detection of copper based on a reagentless signal-on architecture and amplification by gold nanoparticles, Talanta, 85, 730, 10.1016/j.talanta.2011.04.056
Zhang, 2015, Ultrathin two-dimensional nanomaterials, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040
Butler, 2013, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7, 2898, 10.1021/nn400280c
Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589
Gupta, 2015, Recent development in 2D materials beyond graphene, Prog. Mater. Sci., 73, 44, 10.1016/j.pmatsci.2015.02.002
Su, 2015, Electrochemical sensors using two-dimensional layered nanomaterials, Electroanal., 27, 1062, 10.1002/elan.201400655
Kuila, 2011, Recent advances in graphene-based biosensors, Biosen. Bioelectron., 26, 4637, 10.1016/j.bios.2011.05.039
Lin, 2013, Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes, J. Am. Chem. Soc., 135, 5144, 10.1021/ja400041f
Li, 2014, Li intercalation into 1D TiS2(en) chains, J. Am. Chem. Soc., 136, 2986, 10.1021/ja4132399
Wan, 2015, Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2, Nat. Mater., 14, 622, 10.1038/nmat4251
Guo, 2007, Synthesis and electrochemical applications of gold nanoparticles, Anal. Chim. Acta, 598, 181, 10.1016/j.aca.2007.07.054
Gong, 2010, Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury (II), Sensor Actuat B-Chem., 150, 491, 10.1016/j.snb.2010.09.014
Su, 2013, Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode, Electroanal., 25, 2523, 10.1002/elan.201300332
Hatchett, 2008, Composites of intrinsically conducting polymers as sensing nanomaterials, Chem. Rev., 108, 746, 10.1021/cr068112h
Zeng, 2014, Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction, Energ. Environ. Sci., 7, 797, 10.1039/C3EE42620C
Shi, 2013, Selective decoration of Au nanoparticles on monolayer MoS2 single crystals, Sci. Rep., 3, 10.1038/srep01839
Polyakov, 2014, Decoration of WS2 nanotubes and fullerene-like MoS2 with gold nanoparticles, J. Phys. Chem. C, 118, 2161, 10.1021/jp407388h
Banks, 2005, Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites, Chem. Commun., 829, 10.1039/b413177k
Frens, 1973, Controlled nucleation for regulation of particle-size in monodisperse gold suspensions, Nat. Phys. Sci., 241, 20, 10.1038/physci241020a0
Zhou, 2013, Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities, Nano Today, 8, 598, 10.1016/j.nantod.2013.12.002
Luo, 2006, Application of nanoparticles in electrochemical sensors and biosensors, Electroanal., 18, 319, 10.1002/elan.200503415
Katz, 2003, Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors, Electroanal., 15, 913, 10.1002/elan.200390114
Yang, 2013, Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA, ACS Appl. Mater. Interfaces, 5, 3495, 10.1021/am400370s
Ye, 2003, Selective voltammetric detection of uric acid in the presence of ascorbic acid at well-aligned carbon nanotube electrode, Electroanal., 15, 1693, 10.1002/elan.200302752
An, 2002, High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole, J. Electrochemical. Soc., 149, A1058, 10.1149/1.1491235
Williams, 2008, 1
Jiang, 2009, An electrochemical study of 4-aminothiophenol/Pt nanoparticle multilayers on gold electrodes, Langmuir, 25, 534, 10.1021/la802567a
Hayes, 1996, Electrochemistry of surface-confined mixed monolayers of 4-aminothiophenol and thiophenol on Au, Langmuir, 12, 3688, 10.1021/la9507390
Noh, 2014, A colorimetric naked-eye Cu(II) chemosensor and pH indicator in 100% aqueous solution, Dalton transactions, 43, 5652, 10.1039/C3DT53637H
Miller, 1952, Infrared spectra and characteristic frequencies of inorganic ions - their use in qualitative analysis, Anal. Chem., 24, 1253, 10.1021/ac60068a007
Zhao, 2014, Theoretical study on thermodynamic and spectroscopic properties of electro-oxidation of p-aminothiophenol on gold electrode surfaces, J. Phys. Chem. C, 118, 27113, 10.1021/jp507987x
Hurst, 2006, Maximizing DNA loading on a range of gold nanoparticle sizes, Anal. Chem., 78, 8313, 10.1021/ac0613582
Ye, 2015, Facile colorimetric detection of nitrite based on anti-aggregation of gold nanoparticles, Anal. Methods, 7, 4090, 10.1039/C5AY00386E
Eda, 2011, Photoluminescence from chemically exfoliated MoS2, Nano Lett., 11, 5111, 10.1021/nl201874w
Xiang, 2006, New fluorescent rhodamine hydrazone chemosensor for Cu (II) with high selectivity and sensitivity, Org. Lett., 8, 2863, 10.1021/ol0610340
Zhang, 2007, DNA hybridization turns on electrocatalysis at gold electrodes, Chem. Commun., 11, 1154, 10.1039/B615742D
Zhao, 2012, Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite, Chem. Commun., 48, 2180, 10.1039/C1CC16735A
Yang, 2009, Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity, Anal. Chem., 81, 3478, 10.1021/ac802739h