Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading

Mechanics of Materials - Tập 164 - Trang 104139 - 2022
Lanxi Feng1,2, Wanghui Li1,2, Eric N. Hahn3, Paulo S. Branicio4, Xiaoqing Zhang1,2, Xiaohu Yao1,2
1State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510640, China
2Department of Engineering Mechanics, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China
3Center for Energy Research, University of California, San Diego, La Jolla, CA, 92093, United States
4Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States

Tài liệu tham khảo

Agarwal, 2020, Shock wave compression behavior and dislocation density evolution in Al microstructures at the atomic scales and the mesoscales, Int. J. Plast., 128, 102678, 10.1016/j.ijplas.2020.102678 Branicio, 2009, Local stress calculation in simulations of multicomponent systems, J. Comput. Phys., 228, 8467, 10.1016/j.jcp.2009.08.024 Branicio, 2008, Atomistic damage mechanisms during hypervelocity projectile impact on AlN: a large-scale parallel molecular dynamics simulation study, J. Mech. Phys. Solid., 56, 1955, 10.1016/j.jmps.2007.11.004 Branicio, 2010, Nanoductility induced brittle fracture in shocked high performance ceramics, Appl. Phys. Lett., 97, 111903, 10.1063/1.3478003 Branicio, 2013, Shock loading on AlN ceramics: a large scale molecular dynamics study, Int. J. Plast., 51, 122, 10.1016/j.ijplas.2013.06.002 Branicio, 2013, Shock loading on AlN ceramics: a large scale molecular dynamics study, Int. J. Plast., 51, 122, 10.1016/j.ijplas.2013.06.002 Catti, 2001, Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.035504 Chang, 1987, Ab initio pseudopotential study of structural and high-pressure properties of SiC[J], Phys. Rev. B, 35, 8196, 10.1103/PhysRevB.35.8196 Chen, 2003, Shock-induced localized amorphization in boroncarbide, Science, 299, 1563, 10.1126/science.1080819 Ching, 2006, The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC, Mater. Sci. Eng., A, 422, 147, 10.1016/j.msea.2006.01.007 da Rocha, 2009, Pressureless sintering of B4C-SiC composites for armor applications, Ceram. Eng. Sci. Proc., 30, 113, 10.1002/9780470584330.ch11 Datye, 2016, Extraction of anisotropic mechanical properties from nanoindentation of SiC-6H single crystals, J. Appl. Mech., 83, 10.1115/1.4033790 Daviau, 2017, Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell, Phys. Rev. B, 95, 134108, 10.1103/PhysRevB.95.134108 Ebizuka, 2003, Development of the SiC ultralight mirror for large space telescope and for extremely huge ground-based telescope--Specialized Optical Developments in Astronomy, Intl. Soc. Opt. Photonic, 4842, 329 Feldman, 1968, Phonon dispersion curves by Raman scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R, Phys. Rev., 173, 787, 10.1103/PhysRev.173.787 Gorai, 2019, Shock induced phase transition in SiC polytypes, J. Appl. Phys., 125, 185903, 10.1063/1.5090808 Gust, 1973, Dynamic yield, compressional, and elastic parameters for several lightweight intermetallic compounds, J. Appl. Phys., 44, 550, 10.1063/1.1662224 Huang, 2019, Atomistic studies of shock-induced plasticity and phase transition in iron-based single crystal with edge dislocation, Int. J. Plast., 114, 215, 10.1016/j.ijplas.2018.11.004 Inui, 1990, Electron-irradiation-induced crystalline to amorphous transition in α-SiC single crystals, Phil. Mag. B, 61, 107, 10.1080/13642819008208655 Karch, 1996, Pressure-dependent properties of SiC polytypes, Phys. Rev. B, 53, 13400, 10.1103/PhysRevB.53.13400 Karch, 1996, Pressure-dependent properties of SiC polytypes[J], Phys. Rev. B, 53, 13400, 10.1103/PhysRevB.53.13400 Kiani, 2014, Dislocation glide-controlled room-temperature plasticity in 6H-SiC single crystals, Acta Mater., 80, 400, 10.1016/j.actamat.2014.07.066 Kuksin, 2012, Formation of twins in sapphire under shock wave loading: atomistic simulations, J. Appl. Phys., 111, 10.1063/1.3681321 Lane, 2016, Strain-rate dependence of ramp-wave evolution and strength in tantalum, Phys. Rev. B, 94, 10.1103/PhysRevB.94.064301 Larsen, 2016, Robust structural identification via polyhedral template matching, Model. Simulat. Mater. Sci. Eng., 24, 10.1088/0965-0393/24/5/055007 Le Roux, 2010, Ring statistics analysis of topological networks: new approach and application to amorphous GeS2 and SiO2 systems, Comput. Mater. Sci., 49, 70, 10.1016/j.commatsci.2010.04.023 Lee, 2015, First principle investigation of phase transition and thermodynamic properties of SiC, Comput. Mater. Sci., 106, 76, 10.1016/j.commatsci.2015.04.044 Lee, 2015, High-velocity shock compression of SiC via molecular dynamics simulation, Comput. Mater. Sci., 98, 297, 10.1016/j.commatsci.2014.11.029 Levitas, 2012, High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure, Phys. Rev. B, 85, 10.1103/PhysRevB.85.054114 Li, 2016, The spallation of single crystal SiC: the effects of shock pulse duration, Comput. Mater. Sci., 124, 151, 10.1016/j.commatsci.2016.07.028 Li, 2017, Shock-induced spall in single and nanocrystalline SiC, Acta Mater., 140, 274, 10.1016/j.actamat.2017.08.036 Li, 2018, Planar impacts on nanocrystalline SiC: a comparison of different potentials, J. Mater. Sci., 53, 6637, 10.1007/s10853-018-1985-1 Li, 2019, Shock induced damage and fracture in SiC at elevated temperature and high strain rate, Acta Mater., 167, 51, 10.1016/j.actamat.2018.12.035 Li, 2020, On the grain size dependence of shock responses in nanocrystalline sic ceramics at high strain rates, Acta Mater., 200, 632, 10.1016/j.actamat.2020.09.044 Li, 2021, Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression, Int. J. Plast., 138, 102923, 10.1016/j.ijplas.2020.102923 Makeev, 2008, Hypersonic velocity impact on a-SiC target: a diagram of damage characteristics via molecular dynamics simulations, Appl. Phys. Lett., 92, 151909, 10.1063/1.2894188 Makeev, 2008, Molecular dynamics simulations of hypersonic velocity impact protection properties of CNT/a-SiC composites, Compos. Sci. Technol., 68, 2451, 10.1016/j.compscitech.2008.04.040 Makeev, 2009, Shock-wave propagation through pristine a-SiC and carbon-nanotube-reinforced a-SiC matrix composites, J. Appl. Phys., 106, 10.1063/1.3152587 Matsumoto, 2017, On the phase transformation of single-crystal 4H–SiC during nanoindentation, J. Phys. Appl. Phys., 50, 265303, 10.1088/1361-6463/aa7489 Miao, 2003, Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure, Phys. Rev. B, 68, 10.1103/PhysRevB.68.092103 Mishra, 2013, Dislocation controlled wear in single crystal silicon carbide, J. Mater. Sci., 48, 1593, 10.1007/s10853-012-6916-y Nawaz, 2017, Mechanical properties, stress distributions and nanoscale deformation mechanisms in single crystal 6H-SiC by nanoindentation, J. Alloys Compd., 708, 1046, 10.1016/j.jallcom.2017.03.100 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Sekine, 1997, Shock compression of 6H polytype SiC to 160 GPa, Phys. Rev. B, 55, 8034, 10.1103/PhysRevB.55.8034 Spitsberg, 2004, Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications, Int. J. Appl. Ceram. Technol., 1, 291, 10.1111/j.1744-7402.2004.tb00181.x Stukowski, 2009, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/1/015012 Thompson, 2009, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys., 131, 154107, 10.1063/1.3245303 Tracy, 2019, In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction, Phys. Rev. B, 99, 214106, 10.1103/PhysRevB.99.214106 Vashishta, 1996, Molecular dynamics methods and large-scale simulations of amorphous materials, Amorphous Insulators and Semiconductor, 33, 151 Vashishta, 2007, Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide, J. Appl. Phys., 101, 103515, 10.1063/1.2724570 Vogler, 2006, Hugoniot and strength behavior of silicon carbide, J. Appl. Phys., 99, 10.1063/1.2159084 Wu, 2019, Effect of structural anisotropy on the dislocation nucleation and evolution in 6HSiC under nanoindentation, Ceram. Int., 45, 14229, 10.1016/j.ceramint.2019.04.131 Wu, 2020, Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC, Acta Mater., 182, 60, 10.1016/j.actamat.2019.10.037 Xu, 2020, Nanocutting mechanism of 6H-SiC investigated by scanning electron microscope online observation and stress-assisted and ion implant-assisted approaches, Int. J. Adv. Manuf. Technol., 106, 3869, 10.1007/s00170-019-04886-6 Yoshida, 1993, Pressure-induced phase transition in SiC, Phys. Rev. B, 48, 10587, 10.1103/PhysRevB.48.10587 Zhang, 2007, Hypervelocity impact induced deformation modes in α-alumina, Appl. Phys. Lett., 91, 10.1063/1.2753092 Zhang, 2008, Deformation mechanisms and damage in α-alumina under hypervelocity impact loading, J. Appl. Phys., 103, 10.1063/1.2891797 Zhao, 2016, Amorphization and nanocrystallization of silicon under shock compression, Acta Mater., 103, 519, 10.1016/j.actamat.2015.09.022 Zhao, 2018, Shock-induced amorphization in silicon carbide, Acta Mater., 158, 206, 10.1016/j.actamat.2018.07.047 Zhao, 2020, Amorphization-governed elasto-plastic deformation under nanoindentation in cubic (3C) silicon carbide, Ceram. Int., 46, 12470, 10.1016/j.ceramint.2020.02.009 Zhu, 2019, Study on the deformation mechanism of spherical diamond indenter and its influence on 3C-SiC sample during nanoindentation process via molecular dynamics simulation, Mater. Sci. Semicond. Process., 90, 143, 10.1016/j.mssp.2018.10.016 Zhuravlev, 2013, Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: implication for a primary pressure scale, J. Appl. Phys., 113, 113503, 10.1063/1.4795348