Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology
Tài liệu tham khảo
Affourtit, 2015, On the mechanism by which dietary nitrate improves human skeletal muscle function, Front. Physiol., 6, 211, 10.3389/fphys.2015.00211
Albrecht, 2011, In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis, Cell Metab., 14, 819, 10.1016/j.cmet.2011.10.010
Altenhöfer, 2012, The NOX toolbox: validating the role of NADPH oxidases in physiology and disease, Cell. Mol. Life Sci., 69, 2327, 10.1007/s00018-012-1010-9
Anderson, 2009, Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans, J. Clin. Invest., 119, 573, 10.1172/JCI37048
Andrade, 1998, Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse, J. Physiol., 509, 565, 10.1111/j.1469-7793.1998.565bn.x
Aon-Bertolino, 2011, Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system, Biochim. Biophys. Acta, 1810, 93, 10.1016/j.bbagen.2010.06.011
Arnold, 2002, PARP-mediated proteasome activation: a co-ordination of DNA repair and protein degradation?, BioEssays, 24, 1060, 10.1002/bies.10179
Augusto, 2002, Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology, Free Radic. Biol. Med., 32, 841, 10.1016/S0891-5849(02)00786-4
Baez, 2015, Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats, Free Radic. Biol. Med., 80, 191, 10.1016/j.freeradbiomed.2014.09.016
Bailey, 2004, Regulation of free radical outflow from an isolated muscle bed in exercising humans, Am. J. Physiol. Heart Circ. Physiol., 287, H1689, 10.1152/ajpheart.00148.2004
Balon, 1994, Nitric oxide release is present from incubated skeletal muscle preparations, J. Appl. Physiol. (1985), 77, 2519, 10.1152/jappl.1994.77.6.2519
Beltrán, 2000, Oxidative stress and S-nitrosylation of proteins in cells, Br. J. Pharmacol., 129, 953, 10.1038/sj.bjp.0703147
Belousov, 2006, Genetically encoded fluorescent indicator for intracellular hydrogen peroxide, Nat. Methods, 3, 281, 10.1038/nmeth866
Benhar, 2009, Protein denitrosylation: enzymatic mechanisms and cellular functions, Nat. Rev. Mol. Cell Biol., 10, 721, 10.1038/nrm2764
Benhar, 2008, Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins, Science, 320, 1050, 10.1126/science.1158265
Berndt, 2014, Redox regulation by glutathione needs enzymes, Front. Pharmacol., 5, 168, 10.3389/fphar.2014.00168
Biteau, 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin, Nature, 425, 980, 10.1038/nature02075
Bleier, 2015, Generator-specific targets of mitochondrial reactive oxygen species, Free Radic. Biol. Med., 78, 1, 10.1016/j.freeradbiomed.2014.10.511
Block, 2009, Subcellular localization of Nox4 and regulation in diabetes, Proc. Natl. Acad. Sci. U. S. A., 106, 14385, 10.1073/pnas.0906805106
Braakhuis, 2015, Impact of dietary antioxidants on sport performance: a review, Sports Med., 45, 939, 10.1007/s40279-015-0323-x
Brandes, 2014, Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases, J. Mol. Cell. Cardiol., 73, 70, 10.1016/j.yjmcc.2014.02.006
Brewer, 2015, Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins, Annu. Rev. Biochem., 84, 765, 10.1146/annurev-biochem-060614-034018
Brigelius-Flohé, 2011, Basic principles and emerging concepts in the redox control of transcription factors, Antioxid. Redox Signal., 15, 2335, 10.1089/ars.2010.3534
Brot, 1983, Biochemistry and physiological role of methionine sulfoxide residues in proteins, Arch. Biochem. Biophys., 223, 271, 10.1016/0003-9861(83)90592-1
Brown, 2012, There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells, Mitochondrion, 12, 1, 10.1016/j.mito.2011.02.001
Buettner, 2015, Moving free radical and redox biology ahead in the next decade(s), Free Radic. Biol. Med., 78, 236, 10.1016/j.freeradbiomed.2014.10.578
Buettner, 2011, Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide, Anti Cancer Agents Med. Chem., 11, 341, 10.2174/187152011795677544
Carballal, 2014, Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite, Biochim. Biophys. Acta, 1840, 768, 10.1016/j.bbagen.2013.07.005
Cardaci, 2012, Redox implications of AMPK-mediated signal transduction beyond energetic clues, J. Cell Sci., 125, 2115, 10.1242/jcs.095216
Castro, 2012, Carbonylation of the cytoskeletal protein actin leads to aggregate formation, Free Radic. Biol. Med., 53, 916, 10.1016/j.freeradbiomed.2012.06.005
Catalgol, 2010, Chromatin repair after oxidative stress: role of PARP-mediated proteasome activation, Free Radic. Biol. Med., 48, 673, 10.1016/j.freeradbiomed.2009.12.010
Chang, 2004, Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine, J. Biol. Chem., 279, 50994, 10.1074/jbc.M409482200
Chen, 2009, Superoxide is the major reactive oxygen species regulating autophagy, Cell Death Differ., 16, 1040, 10.1038/cdd.2009.49
Cheng, 2011, Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway, Antioxid. Redox Signal., 14, 469, 10.1089/ars.2010.3283
Chondrogianni, 2014, Protein damage, repair and proteolysis, Mol. Asp. Med., 35, 1, 10.1016/j.mam.2012.09.001
Close, 2014, Antioxidants and exercise: a tale of the complexities of relating signalling processes to physiological function?, J. Physiol., 592, 1721, 10.1113/jphysiol.2014.272294
Close, 2005, Microdialysis studies of extracellular reactive oxygen species in skeletal muscle: factors influencing the reduction of cytochrome c and hydroxylation of salicylate, Free Radic. Biol. Med., 39, 1460, 10.1016/j.freeradbiomed.2005.07.009
Cobley, 2015, Influence of vitamin C and vitamin E on redox signaling: implications for exercise adaptations, Free Radic. Biol. Med., 84, 65, 10.1016/j.freeradbiomed.2015.03.018
Cobley, 2015, The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay, Front. Physiol., 6, 182, 10.3389/fphys.2015.00182
Cobley, 2015, Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!, Biogerontology, 16, 249, 10.1007/s10522-014-9546-8
Cobley, 2014, Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle, Free Radic. Biol. Med., 70, 23, 10.1016/j.freeradbiomed.2014.02.004
Cobley, 2011, N-Acetylcysteine's attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations, Int. J. Sport Nutr. Exerc. Metab., 21, 451, 10.1123/ijsnem.21.6.451
Cochemé, 2011, Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix, Cell Metab., 13, 340, 10.1016/j.cmet.2011.02.003
Collins, 2012, Mitochondrial redox signalling at a glance, J. Cell Sci., 125, 801, 10.1242/jcs.098475
Costantini, 2014
Costill, 1992, Carbohydrate nutrition and fatigue, Sports Med., 13, 86, 10.2165/00007256-199213020-00003
D'Autréaux, 2007, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol., 8, 813, 10.1038/nrm2256
Dalle-Donne, 2009, Protein S-glutathionylation: a regulatory device from bacteria to humans, Trends Biochem. Sci., 34, 85, 10.1016/j.tibs.2008.11.002
Dammeyer, 2011, Human protein Atlas of redox systems — what can be learnt?, Biochim. Biophys. Acta, 1810, 111, 10.1016/j.bbagen.2010.07.004
Davies, 1982, Free radicals and tissue damage produced by exercise, Biochem. Biophys. Res. Commun., 107, 1198, 10.1016/S0006-291X(82)80124-1
Davison, 2008, In vitro electron paramagnetic resonance characterization of free radicals: relevance to exercise-induced lipid peroxidation and implications of ascorbate prophylaxis, Free Radic. Res., 42, 379, 10.1080/10715760801976618
Dickinson, 2011, Chemistry and biology of reactive oxygen species in signaling or stress responses, Nat. Chem. Biol., 7, 504, 10.1038/nchembio.607
Dickinson, 2008, A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells, J. Am. Chem. Soc., 130, 9638, 10.1021/ja802355u
Dikalov, 2014, Methods for detection of mitochondrial and cellular reactive oxygen species, Antioxid. Redox Signal., 20, 372, 10.1089/ars.2012.4886
Dillard, 1978, Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation, J. Appl. Physiol. Respir. Environ. Exerc. Physiol., 45, 927
Doulias, 2013, Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation, Sci. Signal., 6, rs1, 10.1126/scisignal.2003252
Dröge, 2002, Free radicals in the physiological control of cell function, Physiol. Rev., 82, 47, 10.1152/physrev.00018.2001
Dupré, 1995
Dworakowski, 2006, Redox signalling involving NADPH oxidase-derived reactive oxygen species, Biochem. Soc. Trans., 34, 960, 10.1042/BST0340960
Dyson, 2011, An integrated approach to assessing nitroso-redox balance in systemic inflammation, Free Radic. Biol. Med., 51, 1137, 10.1016/j.freeradbiomed.2011.06.012
Eberhardt, 2014, H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway, Nat. Commun., 5, 4381, 10.1038/ncomms5381
Egan, 2013, Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab., 17, 162, 10.1016/j.cmet.2012.12.012
Emerling, 2009, Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio, Free Radic. Biol. Med., 46, 1386, 10.1016/j.freeradbiomed.2009.02.019
Espinosa, 2006, Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes, J. Cell. Physiol., 209, 379, 10.1002/jcp.20745
Etgen, 1997, Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway, Diabetes, 46, 1915, 10.2337/diab.46.11.1915
Ferrer-Sueta, 2009, Chemical biology of peroxynitrite: kinetics, diffusion, and radicals, ACS Chem. Biol., 4, 161, 10.1021/cb800279q
Fiehn, 1971, Lipids and fatty acids of sarcolemma, sarcoplasmic reticulum, and mitochondria from rat skeletal muscle, J. Biol Chem., 246, 5617, 10.1016/S0021-9258(18)61852-6
Finichiu, 2015, A mitochondria-targeted derivative of ascorbate: MitoC, Free Radic. Biol. Med., 89, 668, 10.1016/j.freeradbiomed.2015.07.160
Forman, 2015, Even free radicals should follow some rules: a guide to free radical research terminology and methodology, Free Radic. Biol. Med., 78, 233, 10.1016/j.freeradbiomed.2014.10.504
Forman, 2014, An overview of mechanisms of redox signaling, J. Mol. Cell. Cardiol., 73, 2, 10.1016/j.yjmcc.2014.01.018
Forman, 2010, Signaling functions of reactive oxygen species, Biochemistry, 49, 835, 10.1021/bi9020378
Forman, 2007, Use and abuse of exogenous H2O2 in studies of signal transduction, Free Radic. Biol. Med., 42, 926, 10.1016/j.freeradbiomed.2007.01.011
Frey, 2008, The radical SAM superfamily, Crit. Rev. Biochem. Mol. Biol., 43, 63, 10.1080/10409230701829169
Giorgio, 2007, Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?, Nat. Rev. Mol. Cell Biol., 8, 722, 10.1038/nrm2240
Giustarini, 2012, N-Acetylcysteine ethyl ester (NACET): a novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential, Biochem. Pharmacol., 84, 1522, 10.1016/j.bcp.2012.09.010
Giustarini, 2009, Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers, Crit. Rev. Clin. Lab. Sci., 46, 241, 10.3109/10408360903142326
Gliemann, 2013, Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men, J. Physiol., 591, 5047, 10.1113/jphysiol.2013.258061
Go, 2015, The cysteine proteome, Free Radic. Biol. Med., 84, 227, 10.1016/j.freeradbiomed.2015.03.022
Go, 2013, The redox proteome, J. Biol. Chem., 288, 26512, 10.1074/jbc.R113.464131
Go, 2011, Protein cysteines map to functional networks according to steady-state level of oxidation, J. Proteomics Bioinform., 4, 196, 10.4172/jpb.1000190
Godoy, 2011, Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse, Biochim. Biophys. Acta, 1810, 2, 10.1016/j.bbagen.2010.05.006
Goncalves, 2015, Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise, J. Biol. Chem., 290, 209, 10.1074/jbc.M114.619072
Gomez-Cabrera, 2015, Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?, Free Radic. Biol. Med., 86, 37, 10.1016/j.freeradbiomed.2015.04.006
Gomez-Cabrera, 2010, Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation, Am. J. Physiol. Regul. Integr. Comp. Physiol., 298, R2, 10.1152/ajpregu.00142.2009
Gomez-Cabrera, 2008, Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance, Am. J. Clin. Nutr., 87, 142, 10.1093/ajcn/87.1.142
Gomez-Cabrera, 2005, Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats, J. Physiol., 567, 113, 10.1113/jphysiol.2004.080564
Gould, 2015, Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks, Chem. Biol., 22, 965, 10.1016/j.chembiol.2015.06.010
Gould, 2013, Regulation of protein function and signaling by reversible cysteine S-nitrosylation, J. Biol. Chem., 288, 26473, 10.1074/jbc.R113.460261
Hall, 2009, Typical 2-Cys peroxiredoxins—structures, mechanisms and functions, FEBS J., 276, 2469, 10.1111/j.1742-4658.2009.06985.x
Halliwell, 2015
Halliwell, 2014, Cell culture, oxidative stress, and antioxidants: avoiding pitfalls, Biomed J., 37, 99
Halliwell, 2013, The antioxidant paradox: less paradoxical now?, Br. J. Clin. Pharmacol., 75, 637, 10.1111/j.1365-2125.2012.04272.x
Halliwell, 2012, Free radicals and antioxidants: updating a personal view, Nutr. Rev., 70, 257, 10.1111/j.1753-4887.2012.00476.x
Halliwell, 2004, Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?, Br. J. Pharmacol., 142, 231, 10.1038/sj.bjp.0705776
Halliwell, 1987, Oxidants and human disease: some new concepts, FASEB J., 1, 358, 10.1096/fasebj.1.5.2824268
Hancock, 2014, Hydrogen sulfide and cell signaling: team player or referee?, Plant Physiol. Biochem., 78, 37, 10.1016/j.plaphy.2014.02.012
Handayaningsih, 2011, Reactive oxygen species play an essential role in IGF-I signaling and IGF-I-induced myocyte hypertrophy in C2C12 myocytes, Endocrinology, 152, 912, 10.1210/en.2010-0981
Hawley, 2014, Integrative biology of exercise, Cell, 159, 738, 10.1016/j.cell.2014.10.029
Hawley, 1992, Oxidation of carbohydrate ingested during prolonged endurance exercise, Sports Med., 14, 27, 10.2165/00007256-199214010-00003
Hepple, 2003, Aerobic power declines with aging in rat skeletal muscles perfused at matched convective O2 delivery, J. Appl. Physiol. (1985), 94, 744, 10.1152/japplphysiol.00737.2002
Higaki, 2001, Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle, Diabetes, 50, 241, 10.2337/diabetes.50.2.241
Higdon, 2012, The electrophile responsive proteome: integrating proteomics and lipidomics with cellular function, Antioxid. Redox Signal., 17, 1580, 10.1089/ars.2012.4523
Hoffman, 2015, Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates, Cell Metab., 22, 922, 10.1016/j.cmet.2015.09.001
Hogg, 2002, The biochemistry and physiology of S-nitrosothiols, Annu. Rev. Pharmacol. Toxicol., 42, 585, 10.1146/annurev.pharmtox.42.092501.104328
Holmgren, 2010, The use of thiols by ribonucleotide reductase, Free Radic. Biol. Med., 49, 1617, 10.1016/j.freeradbiomed.2010.09.005
Holmström, 2014, Cellular mechanisms and physiological consequences of redox-dependent signalling, Nat. Rev. Mol. Cell Biol., 15, 411, 10.1038/nrm3801
Irrcher, 2009, Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells, Am. J. Physiol. Cell Physiol., 296, C116, 10.1152/ajpcell.00267.2007
Imlay, 2015, Diagnosing oxidative stress in bacteria: not as easy as you might think, Curr. Opin. Microbiol., 24, 124, 10.1016/j.mib.2015.01.004
Imlay, 2013, The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium, Nat. Rev. Microbiol., 11, 443, 10.1038/nrmicro3032
Ito, 2013, Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy, Nat. Med., 19, 101, 10.1038/nm.3019
James, 2005, Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools, J. Biol. Chem., 280, 21295, 10.1074/jbc.M501527200
Janssen-Heininger, 2008, Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med., 45, 1, 10.1016/j.freeradbiomed.2008.03.011
Javeshghani, 2002, Molecular characterization of a superoxide-generating NAD(P)H oxidase in the ventilatory muscles, Am. J. Respir. Crit. Care Med., 165, 412, 10.1164/ajrccm.165.3.2103028
Jones, 2015, The Redox Code, Antioxid. Redox Signal., 10.1089/ars.2015.6247
Jones, 2010, Redox sensing: orthogonal control in cell cycle and apoptosis signalling, J. Intern. Med., 268, 432, 10.1111/j.1365-2796.2010.02268.x
Jones, 2010, Redox compartmentalization and cellular stress, Diabetes Obes. Metab., 12, 116, 10.1111/j.1463-1326.2010.01266.x
Jones, 2008, Radical-free biology of oxidative stress, Am. J. Physiol. Cell Physiol., 295, C849, 10.1152/ajpcell.00283.2008
Jourd'heuil, 2003, Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism, J. Biol. Chem., 278, 15720, 10.1074/jbc.M300203200
Joyner, 2015, Has Neo-Darwinism failed clinical medicine: does systems biology have to?, Prog. Biophys. Mol. Biol., 117, 107, 10.1016/j.pbiomolbio.2014.09.010
Kaludercic, 2014, Reactive oxygen species and redox compartmentalization, Front. Physiol., 5, 285, 10.3389/fphys.2014.00285
Kalyanaraman, 2012, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations, Free Radic. Biol. Med., 52, 1, 10.1016/j.freeradbiomed.2011.09.030
Kang, 2009, Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive, Free Radic. Biol. Med., 47, 1394, 10.1016/j.freeradbiomed.2009.08.007
Karagounis, 2009, The 5' adenosine monophosphate-activated protein kinase: regulating the ebb and flow of cellular energetics, Int. J. Biochem. Cell Biol., 41, 2360, 10.1016/j.biocel.2009.07.004
Kelso, 2001, Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties, J. Biol. Chem., 276, 4588, 10.1074/jbc.M009093200
Khawli, 1994, N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro, J. Appl. Physiol., 77, 317, 10.1152/jappl.1994.77.1.317
Kholodenko, 2010, Signalling ballet in space and time, Nat. Rev. Mol. Cell Biol., 11, 414, 10.1038/nrm2901
Kim, 2014, Oxidative stress in angiogenesis and vascular disease, Blood, 123, 625, 10.1182/blood-2013-09-512749
Kobayashi, 2006, Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species, Adv. Enzym. Regul., 46, 113, 10.1016/j.advenzreg.2006.01.007
Kobzik, 1994, Nitric oxide in skeletal muscle, Nature, 372, 546, 10.1038/372546a0
Kohr, 2012, Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication, Circ. Res., 111, 1308, 10.1161/CIRCRESAHA.112.271320
Kojo, 2012, Oxygen is the key factor associated with the difference between in vivo and in vitro effects of antioxidants, Proc. Natl. Acad. Sci. U. S. A., 109, 10.1073/pnas.1205916109
Krüger, 2009, Exercise affects tissue lymphocyte apoptosis via redox-sensitive and Fas-dependent signaling pathways, Am. J. Physiol. Regul. Integr. Comp. Physiol., 296, R1518, 10.1152/ajpregu.90994.2008
Kubo, 2007, Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension, Toxicology, 232, 138, 10.1016/j.tox.2006.12.023
Kuwahara, 2010, Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy, Free Radic. Biol. Med., 48, 1252, 10.1016/j.freeradbiomed.2010.02.011
Lamb, 2011, Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle, J. Physiol., 589, 2119, 10.1113/jphysiol.2010.199059
Lee, 2014, Peroxiredoxin 3 has a crucial role in the contractile function of skeletal muscle by regulating mitochondrial homeostasis, Free Radic. Biol. Med., 77, 298, 10.1016/j.freeradbiomed.2014.09.010
Lee, 2011, Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation, Cell Res., 21, 817, 10.1038/cr.2011.55
Leonard, 2011, Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology, Curr. Opin. Chem. Biol., 15, 88, 10.1016/j.cbpa.2010.11.012
Leonard, 2009, Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells, ACS Chem. Biol., 4, 783, 10.1021/cb900105q
Leto, 2009, Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases, Antioxid. Redox Signal., 11, 2607, 10.1089/ars.2009.2637
Li, 2013, The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells, J. Cell. Mol. Med., 17, 365, 10.1111/jcmm.12016
Li, 2009, GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat, Free Radic. Biol. Med., 47, 103, 10.1016/j.freeradbiomed.2009.04.014
Li, 2008, Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide, Circulation, 117, 2351, 10.1161/CIRCULATIONAHA.107.753467
Liu, 2000, Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants, J. Appl. Physiol., 89, 21, 10.1152/jappl.2000.89.1.21
Lima, 2010, S-nitrosylation in cardiovascular signaling, Circ. Res., 106, 633, 10.1161/CIRCRESAHA.109.207381
Makanae, 2013, Vitamin C administration attenuates overload-induced skeletal muscle hypertrophy in rats, Acta Physiol. (Oxf.), 208, 57, 10.1111/apha.12042
Malik, 2013, Label-free LC–MS profiling of skeletal muscle reveals heart-type fatty acid binding protein as a candidate biomarker of aerobic capacity, Proteome, 1, 290, 10.3390/proteomes1030290
Manda, 2015, The redox biology network in cancer pathophysiology and therapeutics, Redox Biol., 5, 347, 10.1016/j.redox.2015.06.014
Mankowski, 2015, Dietary antioxidants as modifiers of physiologic adaptations to exercise, Med. Sci. Sports Exerc., 47, 1857, 10.1249/MSS.0000000000000620
Margaritelis, 2015, Blood reflects tissue oxidative stress: a systematic review, Biomarkers, 20, 97, 10.3109/1354750X.2014.1002807
Margaritelis, 2014, Reductive stress after exercise: the issue of redox individuality, Redox Biol., 2, 520, 10.1016/j.redox.2014.02.003
Marinho, 2014, Hydrogen peroxide sensing, signaling and regulation of transcription factors, Redox Biol., 2, 535, 10.1016/j.redox.2014.02.006
Marozkina, 2012, S-Nitrosylation signaling regulates cellular protein interactions, Biochim. Biophys. Acta, 1820, 722, 10.1016/j.bbagen.2011.06.017
McConell, 2012, Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism, Am. J. Physiol. Endocrinol. Metab., 303, E301, 10.1152/ajpendo.00667.2011
McDonagh, 2014, Application of redox proteomics to skeletal muscle aging and exercise, Biochem. Soc. Trans., 42, 965, 10.1042/BST20140085
Merry, 2009, Skeletal muscle glucose uptake during exercise: a focus on reactive oxygen species and nitric oxide signaling, IUBMB Life, 61, 479, 10.1002/iub.179
Meyer, 2010, Fluorescent protein-based redox probes, Antioxid. Redox Signal., 13, 621, 10.1089/ars.2009.2948
Michailidis, 2013, Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise, Am. J. Clin. Nutr., 98, 233, 10.3945/ajcn.112.049163
Miller, 2005, Boronate-based fluorescent probes for imaging cellular hydrogen peroxide, J. Am. Chem. Soc., 127, 16652, 10.1021/ja054474f
Miranda, 1999, Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells, Biochem. Biophys. Res. Commun., 258, 44, 10.1006/bbrc.1999.0580
Miseta, 2000, Relationship between the occurrence of cysteine in proteins and the complexity of organisms, Mol. Biol. Evol., 17, 1232, 10.1093/oxfordjournals.molbev.a026406
Mishin, 2010, Application of the Amplex red/horseradish peroxidase assay to measure hydrogen peroxide generation by recombinant microsomal enzymes, Free Radic. Biol. Med., 48, 1485, 10.1016/j.freeradbiomed.2010.02.030
Moen, 2014, Redox-sensitive residue in the actin-binding interface of myosin, Biochem. Biophys. Res. Commun., 453, 345, 10.1016/j.bbrc.2014.09.072
Moopanar, 2006, The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol, J. Physiol., 571, 191, 10.1113/jphysiol.2005.101105
Morales-Alamo, 2013, Critical role for free radicals on sprint exercise-induced CaMKII and AMPKα phosphorylation in human skeletal muscle, J. Appl. Physiol., 114, 566, 10.1152/japplphysiol.01246.2012
Murrant, 2001, Detection of reactive oxygen and reactive nitrogen species in skeletal muscle, Microsc. Res. Tech., 55, 236, 10.1002/jemt.1173
Murphy, 2014, Signaling by S-nitrosylation in the heart, J. Mol. Cell. Cardiol., 73, 18, 10.1016/j.yjmcc.2014.01.003
Murphy, 2011, Unraveling the biological roles of reactive oxygen species, Cell Metab., 13, 361, 10.1016/j.cmet.2011.03.010
Murphy, 2009, How mitochondria produce reactive oxygen species, Biochem. J., 417, 1, 10.1042/BJ20081386
Murphy, 2007, Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol., 47, 629, 10.1146/annurev.pharmtox.47.120505.105110
Murphy, 2000, Drug delivery to mitochondria: the key to mitochondrial medicine, Adv. Drug Deliv. Rev., 41, 235, 10.1016/S0169-409X(99)00069-1
Neubauer, 2015, Antioxidants in athlete’s basic nutrition: considerations towards a guideline for the intake of vitamin C and vitamin E
Niki, 2009, Lipid peroxidation: physiological levels and dual biological effects, Free Radic. Biol. Med., 47, 469, 10.1016/j.freeradbiomed.2009.05.032
Nikolaidis, 2015, Common questions and tentative answers on how to assess oxidative stress after antioxidant supplementation and exercise
Nikolaidis, 2012, Redox biology of exercise: an integrative and comparative consideration of some overlooked issues, J. Exp. Biol., 215, 1615, 10.1242/jeb.067470
Nikolaidis, 2012, Does vitamin C and E supplementation impair the favorable adaptations of regular exercise?, Oxidative Med. Cell. Longev., 2012, 707941, 10.1155/2012/707941
Nikolaidis, 2012, Exercise as a model to study redox homeostasis in blood: the effect of protocol and sampling point, Biomarkers, 17, 28, 10.3109/1354750X.2011.635805
Nikolaidis, 2011, F2-isoprostane formation, measurement and interpretation: the role of exercise, Prog. Lipid Res., 50, 89, 10.1016/j.plipres.2010.10.002
Nikolaidis, 2009, Blood as a reactive species generator and redox status regulator during exercise, Arch. Biochem. Biophys., 490, 77, 10.1016/j.abb.2009.08.015
Osterburg, 2013, Concerns over interspecies transcriptional comparisons in mice and humans after trauma, Proc. Natl. Acad. Sci. U. S. A., 110, E 3370, 10.1073/pnas.1306033110
Palomero, 2012, Effect of passive stretch on intracellular nitric oxide and superoxide activities in single skeletal muscle fibres: influence of ageing, Free Radic. Res., 46, 30, 10.3109/10715762.2011.637203
Palomero, 2008, In situ detection and measurement of intracellular reactive oxygen species in single isolated mature skeletal muscle fibers by real time fluorescence microscopy, Antioxid. Redox Signal., 10, 1463, 10.1089/ars.2007.2009
Papin, 2004, Hierarchical thinking in network biology: the unbiased modularization of biochemical networks, Trends Biochem. Sci., 29, 641, 10.1016/j.tibs.2004.10.001
Paschalis, 2014, Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation, Eur. J. Nutr.
Patel, 2009, Lipid rafts and caveolae and their role in compartmentation of redox signaling, Antioxid. Redox Signal., 11, 1357, 10.1089/ars.2008.2365
Paulsen, 2014, Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial, J. Physiol., 592, 1887, 10.1113/jphysiol.2013.267419
Peake, 2015, Modulating exercise-induced hormesis: does less equal more?, J. Appl. Physiol. (1985), 119, 172, 10.1152/japplphysiol.01055.2014
Pearson, 2014, Skeletal muscle contractions induce acute changes in cytosolic superoxide, but slower responses in mitochondrial superoxide and cellular hydrogen peroxide, PLoS ONE, 9, 10.1371/journal.pone.0096378
Piantadosi, 2012, Regulation of mitochondrial processes by protein S-nitrosylation, Biochim. Biophys. Acta, 1820, 712, 10.1016/j.bbagen.2011.03.008
Pigliucci, 2003, From molecules to phenotypes? The promise and limits of integrative biology, Basic Appl. Ecol., 4, 297, 10.1078/1439-1791-00161
Place, 2015, Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise, Proc. Natl. Acad. Sci. U. S. A., 10.1073/pnas.1507176112
Poole, 2015, The basics of thiols and cysteines in redox biology and chemistry, Free Radic. Biol. Med., 80, 148, 10.1016/j.freeradbiomed.2014.11.013
Pouvreau, 2014, Genetically encoded reactive oxygen species (ROS) and redox indicators, Biotechnol. J., 9, 282, 10.1002/biot.201300199
Powers, 2011, Exercise-induced oxidative stress in humans: cause and consequences, Free Radic. Biol. Med., 51, 942, 10.1016/j.freeradbiomed.2010.12.009
Quintanilla, 2005, Trolox and 17beta-estradiol protect against amyloid beta-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway, J. Biol. Chem., 280, 11615, 10.1074/jbc.M411936200
Radak, 2013, Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling, Antioxid. Redox Signal., 18, 1208, 10.1089/ars.2011.4498
Radak, 2011, Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA, Mol. Asp. Med., 32, 305, 10.1016/j.mam.2011.10.010
Radak, 2005, Exercise and hormesis: oxidative stress-related adaptation for successful aging, Biogerontology, 6, 71, 10.1007/s10522-004-7386-7
Reczek, 2015, ROS-dependent signal transduction, Curr. Opin. Cell Biol., 33, 8, 10.1016/j.ceb.2014.09.010
Reid, 2015, Redox interventions to increase exercise performance, J. Physiol., 10.1113/JP270653
Reid, 2001, Nitric oxide, reactive oxygen species, and skeletal muscle contraction, Med. Sci. Sports Exerc., 33, 371, 10.1097/00005768-200103000-00006
Reid, 1993, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle, J. Appl. Physiol. (1985), 75, 1081, 10.1152/jappl.1993.75.3.1081
Reid, 1992, Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro, J. Appl. Physiol. (1985), 73, 1797, 10.1152/jappl.1992.73.5.1797
Reid, 1992, Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals, J. Appl. Physiol. (1985), 73, 1805, 10.1152/jappl.1992.73.5.1805
Reily, 2013, Mitochondrially targeted compounds and their impact on cellular bioenergetics, Redox Biol., 1, 86, 10.1016/j.redox.2012.11.009
Richardson, 2007, Exercise-induced brachial artery vasodilation: role of free radicals, Am. J. Physiol. Heart Circ. Physiol., 292, H1516, 10.1152/ajpheart.01045.2006
Rice, 2012, Animal models: not close enough, Nature, 484, S9, 10.1038/nature11102
Ristow, 2014, Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits, Nat. Med., 20, 709, 10.1038/nm.3624
Ristow, 2009, Antioxidants prevent health-promoting effects of physical exercise in humans, Proc. Natl. Acad. Sci. U. S. A., 106, 8665, 10.1073/pnas.0903485106
Roberts, 1997, Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent, Am. J. Phys., 273, E220
Robinson, 2006, Selective fluorescent imaging of superoxide in vivo using ethidium-based probes, Proc. Natl. Acad. Sci. U. S. A., 103, 15038, 10.1073/pnas.0601945103
Rodriguez-Cuenca, 2010, Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice, Free Radic. Biol. Med., 48, 161, 10.1016/j.freeradbiomed.2009.10.039
Roelofs, 2015, Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV, Free Radic. Biol. Med., 86, 250, 10.1016/j.freeradbiomed.2015.05.032
Rumora, 2007, Mycotoxin fumonisin B1 alters cellular redox balance and signalling pathways in rat liver and kidney, Toxicology, 242, 31, 10.1016/j.tox.2007.09.006
Sahlin, 2006, Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle, J. Appl. Physiol. (1985), 101, 833, 10.1152/japplphysiol.01007.2005
Saitoh, 1998, Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1, EMBO J., 17, 2596, 10.1093/emboj/17.9.2596
Sakellariou, 2014, Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases, Free Radic. Res., 48, 12, 10.3109/10715762.2013.830718
Sandström, 2006, Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle, J. Physiol., 575, 251, 10.1113/jphysiol.2006.110601
Scheele, 2009, ROS and myokines promote muscle adaptation to exercise, Trends Endocrinol. Metab., 20, 95, 10.1016/j.tem.2008.12.002
Schieven, 2002, Hypochlorous acid activates tyrosine phosphorylation signal pathways leading to calcium signaling and TNFalpha production, Antioxid. Redox Signal., 4, 501, 10.1089/15230860260196308
Shen, 2012, Analytical measurement of discrete hydrogen sulfide pools in biological specimens, Free Radic. Biol. Med., 52, 2276, 10.1016/j.freeradbiomed.2012.04.007
Sheu, 2006, Targeting antioxidants to mitochondria: a new therapeutic direction, Biochim. Biophys. Acta, 1762, 256, 10.1016/j.bbadis.2005.10.007
Smith, 2011, Mitochondria-targeted small molecule therapeutics and probes, Antioxid. Redox Signal., 15, 3021, 10.1089/ars.2011.3969
Smith, 2010, Animal and human studies with the mitochondria-targeted antioxidant MitoQ, Ann. N. Y. Acad. Sci., 1201, 96, 10.1111/j.1749-6632.2010.05627.x
Smock, 2009, Sending signals dynamically, Science, 324, 198, 10.1126/science.1169377
Sobotta, 2015, Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling, Nat. Chem. Biol., 11, 64, 10.1038/nchembio.1695
Stadtman, 2005, Methionine oxidation and aging, Biochim. Biophys. Acta, 1703, 135, 10.1016/j.bbapap.2004.08.010
Stadtman, 2003, Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 25, 207, 10.1007/s00726-003-0011-2
Stamler, 2001, Nitrosylation. The prototypic redox-based signaling mechanism, Cell, 106, 675, 10.1016/S0092-8674(01)00495-0
Stein, 2013, Redox biology of hydrogen sulfide: implications for physiology, pathophysiology, and pharmacology, Redox Biol., 1, 32, 10.1016/j.redox.2012.11.006
Strobel, 2011, Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis, Med. Sci. Sports Exerc., 43, 1017, 10.1249/MSS.0b013e318203afa3
Sun, 2010, Protein S-nitrosylation and cardioprotection, Circ. Res., 106, 285, 10.1161/CIRCRESAHA.109.209452
Szewczyk, 2002, Mitochondria as a pharmacological target, Pharmacol. Rev., 54, 101, 10.1124/pr.54.1.101
Szeto, 2014, First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics, Br. J. Pharmacol., 171, 2029, 10.1111/bph.12461
Szeto, 2011, Novel therapies targeting inner mitochondrial membrane—from discovery to clinical development, Pharm. Res., 28, 2669, 10.1007/s11095-011-0476-8
Takano, 2005, Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase, Life Sci., 76, 1835, 10.1016/j.lfs.2004.10.031
ten Freyhaus, 2006, Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation, Cardiovasc. Res., 71, 331, 10.1016/j.cardiores.2006.01.022
Theodorou, 2014, Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?, Biochem. Biophys. Res. Commun., 454, 131, 10.1016/j.bbrc.2014.10.042
Thomas, 2015, Signaling and stress: the redox landscape in NOS2 biology, Free Radic. Biol. Med., 87, 204, 10.1016/j.freeradbiomed.2015.06.002
Thomas, 2008, The chemical biology of nitric oxide: implications in cellular signaling, Free Radic. Biol. Med., 45, 18, 10.1016/j.freeradbiomed.2008.03.020
Tomanek, 2015, Proteomic responses to environmentally induced oxidative stress, J. Exp. Biol., 218, 1867, 10.1242/jeb.116475
Toyoda, 2004, Possible involvement of the alpha1 isoform of 5'AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 287, E166, 10.1152/ajpendo.00487.2003
Tsikas, 2012, Potential problems and pitfalls with the use of S-nitrosoglutathione and other S-nitrosothiols in physiology-oriented basic science, J. Physiol., 590, 6247, 10.1113/jphysiol.2012.237412
Tsikas, 2008, A critical review and discussion of analytical methods in the l-arginine/nitric oxide area of basic and clinical research, Anal. Biochem., 379, 139, 10.1016/j.ab.2008.04.018
Ushio-Fukai, 2009, Compartmentalization of redox signaling through NADPH oxidase-derived ROS, Antioxid. Redox Signal., 11, 1289, 10.1089/ars.2008.2333
Ushio-Fukai, 2006, Redox signaling in angiogenesis: role of NADPH oxidase, Cardiovasc. Res., 71, 226, 10.1016/j.cardiores.2006.04.015
Venditti, 2014, Vitamin E supplementation modifies adaptive responses to training in rat skeletal muscle, Free Radic. Res., 48, 1179, 10.3109/10715762.2014.937341
Veskoukis, 2008, Effects of xanthine oxidase inhibition on oxidative stress and swimming performance in rats, Appl. Physiol. Nutr. Metab., 33, 1140, 10.1139/H08-102
Viña, 2013, The free radical theory of aging revisited: the cell signaling disruption theory of aging, Antioxid. Redox Signal., 19, 779, 10.1089/ars.2012.5111
Vogt, 1995, Oxidation of methionyl residues in proteins: tools, targets, and reversal, Free Radic. Biol. Med., 18, 93, 10.1016/0891-5849(94)00158-G
Wadley, 2015, Monitoring changes in thioredoxin and over-oxidised peroxiredoxin in response to exercise in humans, Free Radic. Res., 49, 290, 10.3109/10715762.2014.1000890
Weissig, 2003, Mitochondrial-targeted drug and DNA delivery, Crit. Rev. Ther. Drug Carrier Syst., 20, 1, 10.1615/CritRevTherDrugCarrierSyst.v20.i1.10
Winterbourn, 2015, Are free radicals involved in thiol-based redox signaling?, Free Radic. Biol. Med., 80, 164, 10.1016/j.freeradbiomed.2014.08.017
Winterbourn, 2014, The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells, Biochim. Biophys. Acta, 1840, 730, 10.1016/j.bbagen.2013.05.004
Winterbourn, 2013, The biological chemistry of hydrogen peroxide, Methods Enzymol., 528, 3, 10.1016/B978-0-12-405881-1.00001-X
Winterbourn, 2008, Reconciling the chemistry and biology of reactive oxygen species, Nat. Chem. Biol., 4, 278, 10.1038/nchembio.85
Winterbourn, 2008, Thiol chemistry and specificity in redox signaling, Free Radic. Biol. Med., 45, 549, 10.1016/j.freeradbiomed.2008.05.004
Wood, 2003, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling, Science, 300, 650, 10.1126/science.1080405
Xia, 2003, Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide, Am. J. Physiol. Cell Physiol., 285, C215, 10.1152/ajpcell.00034.2002
Xie, 2006, Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells, J. Biol. Chem., 281, 6366, 10.1074/jbc.M511178200
Yang, 2002, Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid, J. Biol. Chem., 277, 38029, 10.1074/jbc.M206626200
Zhang, 2012, Sub-cellular targeting of constitutive NOS in health and disease, J. Mol. Cell. Cardiol., 52, 341, 10.1016/j.yjmcc.2011.09.006
Zhang, 2008, Thromboxane receptor activates the AMP-activated protein kinase in vascular smooth muscle cells via hydrogen peroxide, Circ. Res., 102, 328, 10.1161/CIRCRESAHA.107.163253
Zhao, 2004, Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury, J. Biol. Chem., 279, 34682, 10.1074/jbc.M402999200
Zmijewski, 2010, Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase, J. Biol. Chem., 285, 33154, 10.1074/jbc.M110.143685