DeepMask: face mask detection using GAN algorithm
Tóm tắt
COVID-19 pandemic is the main reason people must wear face masks in public places. Traditionally, officers monitor the use of face masks in the public area manually. However, monitoring masks using manual techniques is challenging in a crowded spot. Thus, we propose a face mask detection based on Generative Adversarial Networks (GAN) through the learning model to accelerate mask detection accurately and quickly. To construct our detection model, we collect the dataset, conduct pre-processing, and train the model by tuning multiple parameters to obtain the highest accuracy and tiny loss. The experimental results can produce D_Loss = 0.0032 and G_Loss = 7.3296. Therefore, the proposed model can be a promising solution for mask detection issues.
Tài liệu tham khảo
Goel, T., Murugan, R., Mirjalili, S., Chakrabartty, D. K.: Automatic screening of COVID-19 using an optimized generative adversarial network. Cogn. Comput. (2021)
Wihandika, R.: Face mask detection using adjacent evaluation method local binary patterns. RESTI 5(4), 705–712 (2021)
Abboah-Offei, M., Salifu, Y., Adewale, B., Bayuo, J., Ofosu-Poku, R., Opare-Lokko, E.B.A.: A rapid review of the use of face mask in preventing the spread of COVID-19. Int. J. Nurs. Stud. Adv. 3, 100013 (2021)
Loey, M., Manogaran, G., Taha, M. H. N., Khalifa, N.E.M.: A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measur. J. Int. Measur. Confed. 167 (2021)
Venkateswarlu, I. B., Kakarla, J., Prakash, S. Face mask detection using MobileNet and global pooling block. 4th IEEE Conference on Information and Communication Technology, CICT (2020)
Das, A., Wasif Ansari, M., Basak, R.. Covid-19 face mask detection using TensorFlow, Keras and OpenCV. In: 2020 IEEE 17th India Council International Conference, INDICON (2020)
Santhosh, C., Kumar, M. R., Prasanna, J. L., Kumar, I. R., Kumar, U. V., Sri, S. N.: Face mask detection using LabView1. Int. J. Online Biomed. Eng. 17(6). (2021)
Oumina, A., el Makhfi, N., Hamdi, M.: Control the COVID-19 pandemic: face mask detection using transfer learning. In: 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science, ICECOCS (2020)
Sakshi, S., Gupta, A. K., Singh Yadav, S., Kumar, U.: Face mask detection system using CNN. In: 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (2021)
Wanda, P., Jie, H.J.: DeepProfile: finding fake profile in online social network using dynamic CNN. J Inf Secur Appl 52, 102465 (2020)
Wanda, P., Marselina, E.H., Jie, H.J.: DeepOSN: bringing deep learning as malicious detection scheme in online social network. IAES Int. J. Artif. Intell. (IJ-AI) 9(1):146 (2020)
Jie, H. J.: Wanda, P.: RunPool: a dynamic pooling layer for convolution neural network. 13(1), 66–76 (2020)
Wanda, P., Jie, H.J.: DeepFriend: finding abnormal nodes in online social networks using dynamic deep learning. Soc. Netw. Anal. Min. 11, 34 (2021)
Wanda, P., Huang J.J.: DeepSentiment : finding malicious sentiment in online social network based on dynamic deep learning. (2019).
Singh, K. R., Kamble, S. D., Kalbande, S. M., Fulzele, P.: A review on COVID-19 face mask detection using CNN. J. Pharm. Res. Int. (2021)
Mann, P., Jain, S., Mittal, S., Bhat, A.: Generation of COVID-19 chest CT scan images using generative adversarial networks (2021)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)
Tomás, J., Rego, A., Viciano-Tudela, S., Lloret, J.: Incorrect facemask-wearing detection using convolutional neural networks with transfer learning. Healthc. (Switzerl.) 9(8). (2021)
Kumar, A., Kalia, A., Verma, K., Sharma, A., Kaushal, M. Scaling up face masks detection with YOLO on a novel dataset. Optik 239 (2021)
Jiang, X., Gao, T., Zhu, Z., Zhao, Y.: Real-time face mask detection method based on YOLOv3. Electronics 10, 837 (2021)
Hussain, S., Yu, Y., Ayoub, M., Khan, A., Rehman, R., Wahid, J.A., Hou, W.: IoT and deep learning based approach for rapid screening and face mask detection for infection spread control of COVID-19. Appl. Sci. 11, 3495 (2021)
Singh, S., Ahuja, U., Kumar, M., Kumar, K., Sachdeva, M.: Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment. Multimed. Tools Appl. 80(13) (2021)
Sanajalwe, Y., Anbar, M., Al-E’Mari, S.: Covid-19 automatic detection using deep learning. Comput. Syst. Sci. Eng. 39(1) (2021)
Said, Y.: Pynq-YOLO-Net: an embedded quantized convolutional neural network for face mask detection in COVID-19 pandemic era. Int. J. Adv. Comput. Sci. Appl. 11(9) (2020)
Zulkifley, M. A., Abdani, S. R., Zulkifley, N. H.: COVID-19 screening using a lightweight convolutional neural network with generative adversarial network data augmentation. Symmetry 12(9) (2020)
Rabbi, J., Ray, N., Schubert, M., Chowdhury, S., Chao, D.: Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network. Remote Sens. 9 (2020)