Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator

Paul Houston1, Ilaria Perugia2, Dominik Schötzau3
1Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
2Dipartimento di Matematica, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy
3Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver V6T 1Z2, Canada

Tài liệu tham khảo

Amrouche, 1998, Vector potentials in three-dimensional non-smooth domains, Math. Models Appl. Sci., 21, 823, 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B Arnold, 2001, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749, 10.1137/S0036142901384162 Becker, 2003, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192, 723, 10.1016/S0045-7825(02)00593-5 Eriksson, 1995, Introduction to adaptive methods for differential equations, 105 P. Houston, I. Perugia, D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator, University of Leicester Technical Report 2002/45, SIAM J. Numer. Anal. 42 (2004) 434–459 P. Houston, I. Perugia, D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: non-stabilized formulation, University of Leicester Technical Report 2003/17, J. Sci. Comp., in press P. Houston, I. Perugia, D. Schötzau, Nonconforming mixed finite element approximations to time-harmonic eddy current problems, University of Leicester Technical Report 2003/15, IEEE Trans. Magn. 40 (2004) 1268–1273 Monk, 2003 Perugia, 2003, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations, Math. Comp., 72, 1179, 10.1090/S0025-5718-02-01471-0