Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling

Elsevier BV - Tập 265 Số 1-2 - Trang 63-78 - 2009
Damien Damien, Isabelle Isabelle, Jérôme Jérôme, Nathaniel Nathaniel, Bruno Bruno, François François

Tài liệu tham khảo

Arvidson, 2000, Temperature dependence of mineral precipitation rates along the CaCO3–MgCO3 join, Aquat. Geochem., 6, 249, 10.1023/A:1009619426406 Bachu, 2000, Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change, Energy Convers. Manage., 41, 953, 10.1016/S0196-8904(99)00149-1 Barnes, 1973, Silica-carbonates alteration of serpentines: wall rock alteration in mercury deposits of the California Coast Range, Econ. Geol., 68, 388, 10.2113/gsecongeo.68.3.388 Béarat, 2006, Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation, Environ. Sci. Technol., 40, 4802, 10.1021/es0523340 Beig, 2006, Albite dissolution kinetics as a function of distance from equilibrium: implications for natural feldspar weathering, Geochim. Cosmochim. Acta, 70, 1402, 10.1016/j.gca.2005.10.035 Bénézeth, 2007, Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: implications for mineral trapping of CO2, Geochim. Cosmochim. Acta, 71, 4438, 10.1016/j.gca.2007.07.003 Berg, 2000, Carbon dioxide mediated dissolution of Ca–feldspar: implications for silicate weathering, Chem. Geol., 163, 25, 10.1016/S0009-2541(99)00132-1 Berner, 1983, The carbonate–silicate cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 284, 641, 10.2475/ajs.283.7.641 Brantley, 2000, Surface area and porosity of primary silicate minerals, Am. Mineral., 85, 1767, 10.2138/am-2000-11-1220 Brantley, 1986, Dissolution at dislocation etch pits in quartz, Geochim. Cosmochim. Acta, 50, 2349, 10.1016/0016-7037(86)90087-6 Burch, 1993, Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8, Chem. Geol., 105, 137, 10.1016/0009-2541(93)90123-Z Cama, 2000, Smectite dissolution kinetics at 80 °C and pH 8.8, Geochim. Cosmochim. Acta, 64, 2701, 10.1016/S0016-7037(00)00378-1 Carroll, 2005, Dependence of labradorite dissolution kinetics on CO2(aq), Al(aq), and temperature, Chem. Geol., 217, 213, 10.1016/j.chemgeo.2004.12.008 Chen, 1998, Diopside and anthophyllite dissolution at 25° and 90 °C and acid pH, Chem. Geol., 147, 233, 10.1016/S0009-2541(98)00016-3 Chen, 2000, Dissolution of forsteritic olivine at 65 °C and 2 < pH < 5, Chem. Geol., 165, 267, 10.1016/S0009-2541(99)00177-1 Cubillas, 2005, How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution–CdCO3 precipitation, Geochim. Cosmochim. Acta, 69, 5459, 10.1016/j.gca.2005.07.016 Daval, 2008, Combining experimental studies and kinetic modelling to investigate the carbonation of Ca-bearing silicates, Geochim. Cosmochim. Acta, Goldschmidt Conference Abstract, 72, A200 Dessert, 2003, Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chem. Geol., 202, 257, 10.1016/j.chemgeo.2002.10.001 Devidal, 1997, An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150 °C, 40 bars, and pH 2, 6.8, and 7.8, Geochim. Cosmochim. Acta, 61, 5165, 10.1016/S0016-7037(97)00352-9 Dixit, 2007, Effect of solution saturation state and temperature on diopside dissolution, Geochem. Trans., 8:3 Dufaud, F., 2006. Etude expérimentale des réactions de carbonatation minérale du CO2 dans les roches basiques et ultrabasiques. PhD Thesis, Institut de Physique du Globe de Paris, Paris, 261 pp. Gautier, 2001, Are quartz dissolution rates proportional to BET surface areas? Geochim, Cosmochim. Acta, 65, 1059, 10.1016/S0016-7037(00)00570-6 Giammar, 2005, Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide, Chem. Geol., 217, 257, 10.1016/j.chemgeo.2004.12.013 Goff, 1998, Carbon dioxide sequestering using ultramafic rocks, Environ. Geosci., 5, 89, 10.1046/j.1526-0984.1998.08014.x Golubev, 2006, Experimental study of the effect of organic ligands on diopside dissolution kinetics, Chem. Geol., 235, 377, 10.1016/j.chemgeo.2006.08.004 Golubev, 2005, Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 °C, Chem. Geol., 217, 227, 10.1016/j.chemgeo.2004.12.011 Gourlan, A., 2006. Stratigraphie isotopique du Néodyme dans l'Océan Indien: Paléocirculation océanique et érosion continentale. PhD Thesis, Institut de Physique du Globe de Paris, Paris. Grandstaff, 1986, The dissolution rate of forsteritic olivine from Hawaiian beach sand, 41 Green, 2006, Incongruent dissolution of wollastonite measured with vertical scanning interferometry, Am. Mineral., 91, 430, 10.2138/am.2006.1968 Hänchen, 2006, Dissolution kinetics of fosteritic olivine at 90–150 °C, Geochim. Cosmochim. Acta, 70, 4403, 10.1016/j.gca.2006.06.1560 Hellevang, 2005, Can dawsonite permanently trap CO2?, Environ. Sci. Technol., 39, 8281, 10.1021/es0504791 Hellmann, 2006, Dissolution kinetics as a function of the Gibbs free energy of reaction: an experimental study based on albite feldspar, Geochim. Cosmochim. Acta, 70, 364, 10.1016/j.gca.2005.10.007 Hellmann, 2003, An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution–reprecipitation, Phys. Chem. Miner., 30, 192, 10.1007/s00269-003-0308-4 Hellmann, 2007, Albite feldspar dissolution kinetics as a function of the Gibbs free energy at high pCO2, 591 Holland, 1990, An enlarged and updated thermodynamic dataset with uncertainties and correlations., J. Metamorph. Geol., 8, 89, 10.1111/j.1525-1314.1990.tb00458.x Huijgen, 2006, Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process, Chem. Eng. Sci., 61, 4242, 10.1016/j.ces.2006.01.048 Jonckbloedt, 1998, Olivine dissolution in sulphuric acid at elevated temperatures—implications for the olivine process, an alternative waste acid neutralizing process, J. Geochem. Explor., 62, 337, 10.1016/S0375-6742(98)00002-8 Kazmierczak, 1982, Crystal growth of calcium carbonate. A controlled composition kinetic study, J. Phys. Chem., 86, 103, 10.1021/j100390a020 Kharaka, 2006, Gas–water–rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins, Geology, 34, 577, 10.1130/G22357.1 Knauss, 2005, Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2, Chem. Geol., 217, 339, 10.1016/j.chemgeo.2004.12.017 Lackner, 2003, A guide to CO2 sequestration, Science, 300, 1677, 10.1126/science.1079033 Lagache, 1976, New data on the kinetics of the dissolution of alkali feldspars at 200 °C in CO2 charged water, Geochim. Cosmochim. Acta, 40, 157, 10.1016/0016-7037(76)90173-3 Lasaga, 1981, Transition state theory, 135 Lasaga, 1995, Fundamental approaches in describing mineral dissolution and precipitation rates, 23 Lasaga, 2001, Variation of crystal dissolution rate based on a dissolution stepwave model, Science, 291, 2400, 10.1126/science.1058173 McGrail, 2006, Potential for carbon dioxide sequestration in flood basalts, J. Geophys. Res., 111, B12201, 10.1029/2005JB004169 Morse, 2007, Calcium carbonate formation and dissolution, Chem. Rev., 107, 342, 10.1021/cr050358j Murphy, 1989, Dislocations and feldspar dissolution, Eur. J. Mineral., 1, 315, 10.1127/ejm/1/3/0315 Murphy, 1989, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; IV, Retrieval of rate constants and activation parameters for the hydrolysis of pyroxene, wollastonite, olivine, andalusite, quartz, and nepheline, Am. J. Sci., 289, 17, 10.2475/ajs.289.1.17 O'Connor, 2002, Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products, Miner. Metall. Process., 19, 95 Oelkers, 1988, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: aqueous tracer diffusion coefficients of ions to 1000 °C and 5 kb, Geochim. Cosmochim. Acta, 52, 63, 10.1016/0016-7037(88)90057-9 Oelkers, 1995, Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis, Geochim. Cosmochim. Acta, 59, 5039, 10.1016/0016-7037(95)00326-6 Oelkers, 2001, An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution, Geochim. Cosmochim. Acta, 65, 1219, 10.1016/S0016-7037(00)00564-0 Oelkers, 2005, Geochemical aspects of CO2 sequestration, Chem. Geol., 217, 183, 10.1016/j.chemgeo.2004.12.006 Oelkers, 1994, The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions, Geochim. Cosmochim. Acta, 58, 2011, 10.1016/0016-7037(94)90281-X Oelkers, 2001, On the interpretation of closed system mineral dissolution experiments: comment on “Mechanism of kaolinite dissolution at room temperature and pressure Part II: Kinetic study” by Huertas et al. (1999), Geochim. Cosmochim. Acta, 65, 4429, 10.1016/S0016-7037(01)00735-9 Pacala, 2004, Stabilization wedges: solving the climate problem for the next 50 years with current technologies, Science, 305, 968, 10.1126/science.1100103 Park, 2004, CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process, Chem. Eng. Sci., 59, 5241, 10.1016/j.ces.2004.09.008 Park, 2003, CO2 mineral sequestration: chemically enhanced aqueous carbonation of serpentine, Can. J. Chem. Eng., 81, 885 Pokrovsky, 1999, Processes at the magnesium-bearing carbonates/solution interface. II. Kinetics and mechanism of magnesite dissolution, Geochim. Cosmochim. Acta, 63, 881, 10.1016/S0016-7037(99)00013-7 Putnis, 2007, The mechanism of reequilibration of solids in the presence of a fluid phase, J. Solid State Chem., 180, 1783, 10.1016/j.jssc.2007.03.023 Regnault, 2005, Étude expérimentale de la réactivité du CO2 supercritique vis-à-vis de phases minérales pures. Implications pour la séquestration géologique de CO2, C.R. Geosci., 337, 1331, 10.1016/j.crte.2005.07.012 Rimstidt, 1983, Geothermal mineralization I: the mechanism of formation of the beowawe, Nevada, siliceous sinter deposit, Am. J. Sci., 283, 861, 10.2475/ajs.283.8.861 Rimstidt, 1986, Mineral/solution reaction rates in a mixed flow reactor: wollastonite hydrolysis, Geochim. Cosmochim. Acta, 50, 2509, 10.1016/0016-7037(86)90033-5 Robie, 1995 Sayles, 1973, The crystallization of magnesite from aqueous solution, Geochim. Cosmochim. Acta, 37, 87, 10.1016/0016-7037(73)90246-9 Schott, 1981, Mechanism of pyroxene and amphibole weathering—I. Experimental studies of iron-free minerals, Geochim. Cosmochim. Acta, 45, 2123, 10.1016/0016-7037(81)90065-X Schott, 1989, Dissolution kinetics of strained calcite, Geochim. Cosmochim. Acta, 53, 373, 10.1016/0016-7037(89)90389-X Schott, 2002, The mechanism of altered layers formation on wollastonite revisited: a combined spectroscopic/kinetic study, Geochim. Cosmochim. Acta, 66, A686 Shih, 1999, Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature, Ind. Eng. Chem. Res., 38, 1316, 10.1021/ie980508z Shiraki, 1995, Kinetics of near-equilibrium calcite precipitation at 100 °C: an evaluation of elementary reaction-based and affinity-based rate laws, Geochim. Cosmochim. Acta, 59, 1457, 10.1016/0016-7037(95)00055-5 Sjoberg, 1989, Kinetics and Non-Stoichiometry of Labradorite Dissolution, Water–Rock Interaction, WRI-6, 639 Spycher, 2003, CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar, Geochim. Cosmochim. Acta, 67, 3015, 10.1016/S0016-7037(03)00273-4 Sverdrup, 1990 Taylor, 2000, The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state, Geochim. Cosmochim. Acta, 64, 2389, 10.1016/S0016-7037(00)00361-6 van der Lee, J., De Windt, L., 2002. CHESS Tutorial and Cookbook. Updated for version 3.0., Manual Nr. LHM/RD/02/13, Paris, 116 pp. Walker, 1981, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86, 9776, 10.1029/JC086iC10p09776 Weissbart, 2000, Wollastonite: incongruent dissolution and leached layer formation, Geochim. Cosmochim. Acta, 64, 4007, 10.1016/S0016-7037(00)00475-0 Wilson, 2006, Verifying and quantifying carbon fixation in minerals from serpentine-rich mine tailings using the Rietveld method with X-ray powder diffraction data, Am. Mineral., 91, 1331, 10.2138/am.2006.2058 Wogelius, 1991, Olivine dissolution at 25 °C: effects of pH, CO2, and organic acids, Geochim. Cosmochim. Acta, 55, 943, 10.1016/0016-7037(91)90153-V Xie, 1994, Dissolution stoichiometry and adsorption of alkali and alkaline earth elements to the acid-reacted wollastonite surface at 25 °C, Geochim. Cosmochim. Acta, 58, 2587, 10.1016/0016-7037(94)90130-9 Xu, 2004, Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Appl. Geochem., 19, 917, 10.1016/j.apgeochem.2003.11.003