Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%: The impact of anchoring groups

Journal of Energy Chemistry - Tập 68 - Trang 87-95 - 2022
Qiaogan Liao1,2, Yang Wang3, Zilong Zhang4, Kun Yang1, Yongqiang Shi1, Kui Feng1, Bolin Li1, Jiachen Huang1, Peng Gao4, Xugang Guo1
1Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
2School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
3College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, Fujian, China
4CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China

Tài liệu tham khảo

Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r National Renewable Energy Laboratory, Best research-cell efficiencies chart (2020); www.nrel.gov/pv/assets/pdfs/bestresearchcell-efficiencies.20200218.pdf. Jena, 2019, Chem. Rev., 119, 3036, 10.1021/acs.chemrev.8b00539 Liu, 2016, Adv. Energy Mater., 6, 1600457, 10.1002/aenm.201600457 Miyano, 2016, Acc. Chem. Res., 49, 303, 10.1021/acs.accounts.5b00436 Chen, 2017, Adv. Energy Mater., 7, 1602400, 10.1002/aenm.201602400 Lin, 2019, Nat. Energy, 4, 864, 10.1038/s41560-019-0466-3 Zheng, 2020, Nat. Energy, 5, 131, 10.1038/s41560-019-0538-4 Jeong, 2020, Science, 369, 1615, 10.1126/science.abb7167 Roose, 2019, Adv. Energy Mater., 9, 1803140, 10.1002/aenm.201803140 Yin, 2020, Energy Environ. Sci., 13, 4057, 10.1039/D0EE02337J Hu, 2020, Adv. Sci., 7, 2001285, 10.1002/advs.202001285 Chen, 2021, Sci. China Chem., 64, 41, 10.1007/s11426-020-9857-1 Wan, 2020, J. Mater. Chem. A, 8, 6517, 10.1039/D0TA00522C Yan, 2016, Adv. Energy Mater., 6, 1600474, 10.1002/aenm.201600474 Li, 2020, J. Am. Chem. Soc., 142, 20134, 10.1021/jacs.0c09845 Sun, 2021, Angew. Chem. Int. Ed., 60, 7227, 10.1002/anie.202016085 Xu, 2021, Adv. Mater., 33, 2006753, 10.1002/adma.202006753 Li, 2021, Adv. Funct. Mater., 31, 2100332, 10.1002/adfm.202100332 Jiang, 2020, Adv. Mater., 32, 1908011, 10.1002/adma.201908011 Park, 2016, Nat. Energy, 1, 16152, 10.1038/nenergy.2016.152 Kim, 2020, Adv. Energy Mater., 10, 2002606, 10.1002/aenm.202002606 Casalini, 2017, Chem. Soc. Rev., 46, 40, 10.1039/C6CS00509H Halik, 2011, Adv. Mater., 23, 2689, 10.1002/adma.201100337 Li, 2021, Adv. Funct. Mater., 31, 2103847, 10.1002/adfm.202103847 Hoeppener, 2003, Nano. Lett., 3, 761, 10.1021/nl034176l Ali, 2020, Adv. Energy Mater., 10, 2002989, 10.1002/aenm.202002989 Yang, 2021, Adv. Energy Mater., 11, 2100493, 10.1002/aenm.202100493 Chang, 2021, Adv. Sci., 8, 2002718, 10.1002/advs.202002718 Wolff, 2020, ACS Nano, 14, 1445, 10.1021/acsnano.9b03268 Magomedov, 2018, Adv. Energy Mater., 8, 1801892, 10.1002/aenm.201801892 Li, 2020, Adv. Funct. Mater., 30, 1909509, 10.1002/adfm.201909509 Al-Ashouri, 2019, Energy Environ. Sci., 12, 3356, 10.1039/C9EE02268F Li, 1839, J. Am. Chem. Soc., 138, 11833 Wang, 2019, Adv. Mater., 31, 1902781, 10.1002/adma.201902781 Wang, 2020, J. Am. Chem. Soc., 142, 16632, 10.1021/jacs.0c06373 Ok, 2018, Nat. Commun., 9, 4537, 10.1038/s41467-018-06998-1 Rakstys, 2017, J. Mater. Chem. A, 5, 7811, 10.1039/C7TA01718A X. Sun, Q. Xue, Z. Zhu, Q. Xiao, K. Jiang, H.-L. Yip, H. Yan, Z. Li, Chem. Sci. 9 (2018) 2698–2074. Zhao, 2020, Energy Environ. Sci., 13, 4334, 10.1039/D0EE01655A Zhang, 2018, Chem. Sci., 9, 5919, 10.1039/C8SC00731D Zhang, 2021, ACS Appl. Mater. Interfaces, 13, 6688, 10.1021/acsami.0c21729 Paek, 2016, Nanoscale, 8, 6335, 10.1039/C5NR05697G Mai, 2021, Adv. Funct. Mater., 31, 2007762, 10.1002/adfm.202007762 Jo, 2020, Adv. Funct. Mater., 30, 2007180 E.A. Silinsh, V. Cápek, AIP Press, NY (1994). Cheng, 2017, Adv. Mater., 29, 1605216, 10.1002/adma.201605216 Pujari, 2014, Angew. Chem. Int. Ed., 53, 6322, 10.1002/anie.201306709 Ulman, 1996, Chem. Rev., 96, 1533, 10.1021/cr9502357 Liao, 2021, ACS Appl. Mater. Interfaces, 14, 16744, 10.1021/acsami.1c00729 Li, 2020, J. Mater. Chem. A, 8, 16560, 10.1039/C9TA13167A Lange, 2014, Adv. Funct. Mater., 24, 7014, 10.1002/adfm.201401493 Yao, 2020, J. Am. Chem. Soc., 142, 17681, 10.1021/jacs.0c08352 Yusoff, 2016, Nanoscale, 8, 6328, 10.1039/C5NR06234A Du, 2020, Adv. Mater., 32, 2004979, 10.1002/adma.202004979 Kim, 2017, ACS Energy Lett., 2, 1978, 10.1021/acsenergylett.7b00573 Al-Ashouri, 2020, Science, 370, 1300, 10.1126/science.abd4016 Chen, 2016, Angew. Chem. Int. Ed., 55, 10376, 10.1002/anie.201602775 Bi, 2015, Nat. Commun., 6, 7747, 10.1038/ncomms8747 Azmi, 2018, Adv. Energy Mater., 8, 1701683, 10.1002/aenm.201701683 Luo, 2020, Nat. Rev. Mater., 5, 44, 10.1038/s41578-019-0151-y Stolterfoht, 2018, Nat. Energy, 3, 847, 10.1038/s41560-018-0219-8 Cheng, 2020, ChemSusChem, 13, 2779, 10.1002/cssc.202000342