A bifurcation theorem for critical points of variational problems

Shui-Nee Chow1
1Department of Mathematics, Michigan State University, Wells Hall, East Lansing, MI 48824, USA

Tài liệu tham khảo

Bates, 1985, The center manifold theorem with applications Berger, 1972, Bifurcation theory and the type number of Marston Morse, Proc. Natn. Acad. Sci., 69, 1737, 10.1073/pnas.69.7.1737 Böhme, 1972, Die Lösung der Verzweigungsgleichung für nichtlineare Eigenwertprobleme, Math. Z., 127, 105, 10.1007/BF01112603 Carr, 1981 Chow, 1983, Methods in Bifurcation Theory, 250 Clark, 1975, Eigenvalue perturbation for odd, gradient operators, Rocky Mt. J. Math., 5, 317, 10.1216/RMJ-1975-5-3-317 Conley, 1976, Isolated invariant sets and the Morse index, 38 Fadell, 1977, Bifurcation for odd potential operators and an alternative index, J. funct. Analysis, 26, 48, 10.1016/0022-1236(77)90015-5 Henry, 1982, Geometric theory of semilinear parabolic equations, 840 Kato, 1980, Perturbation theory for linear operators, 132 Marino, 1973, La biforcazione nel caso variationale, Conf. Sem. Mat. Marsden, 1983 Palmer, 1980, Qualitative behaviour of a system of ODE near an equilibrium point—a generalization of the Hartman–Grobman theorem Rabinowitz, 1974 Rabinowitz, 1977, A bifurcation theorem for potential operators, J. funct. Analysis, 25, 412, 10.1016/0022-1236(77)90047-7 Takens, 1972, Some remarks on the Böhme–Berger bifurcation theorem, Math. Z., 129, 359, 10.1007/BF01181624 Vanderbauwhede, 1985, Center manifolds and contractions on a scale of Banach spaces Kielhöfer, 1985, A bifurcation theorem for potential operators Abraham, 1983