Numerical investigation of key parameters of the porous media combustion based Micro-Thermophotovoltaic system
Tài liệu tham khảo
Ju, 2011, Microscale combustion: technology development and fundamental research, Prog Energy Combust Sci, 37, 669, 10.1016/j.pecs.2011.03.001
Fan, 2017, Numerical investigation of the effect of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine, Energy Convers Manag, 133, 511, 10.1016/j.enconman.2016.10.070
Kang, 2006, Electrodes with high power and high capacity for rechargeable lithium batteries, Science, 311, 977, 10.1126/science.1122152
Chou, 2011, Development of micro power generators–a review, Appl Energy, 88, 1, 10.1016/j.apenergy.2010.07.010
Chan, 2013, Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics, Proc Natl Acad Sci, 110, 5309, 10.1073/pnas.1301004110
Pan, 2015, Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor, Appl Energy, 160, 802, 10.1016/j.apenergy.2014.12.049
Yang, 2014, Development of micro-thermophotovoltaic power generator with heat recuperation, Energy Convers Manag, 78, 81, 10.1016/j.enconman.2013.10.040
Lee, 2008, Studies on a heat-recirculating microemitter for a micro thermophotovoltaic system, Combust Flame, 153, 161, 10.1016/j.combustflame.2008.01.003
Zuo, 2017, Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system, Energy, 122, 408, 10.1016/j.energy.2017.01.079
Fan, 2017, Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body, Energy, 123, 252, 10.1016/j.energy.2017.02.003
Park, 2011, Measured and predicted performance of a micro-thermophotovoltaic device with a heat-recirculating micro-emitter, Int J Heat Mass Trans, 54, 1046, 10.1016/j.ijheatmasstransfer.2010.11.028
Li, 2016, Fundamental flame characteristics of premixed H 2–air combustion in a planar porous micro-combustor, Chem Eng J, 283, 1187, 10.1016/j.cej.2015.08.056
Qiu, 2006, Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources, Solar Energy Mater. Solar Cell, 90, 68, 10.1016/j.solmat.2005.02.002
Iles, 1996, The influence of bandgap on TPV converter efficiency, 446
Neuer, 1998, Spectral and total emissivity of high-temperature materials, Int J Thermophys, 19, 917, 10.1023/A:1022607426413
Sulima, 2001, Fabrication and simulation of GaSb thermophotovoltaic cells, Solar Energy Mater. Solar Cell, 66, 533, 10.1016/S0927-0248(00)00235-X
Ferguson, 1995, Theoretical study of GaSb PV cells efficiency as a function of temperature, Solar Energy Mater. Solar Cell, 39, 11, 10.1016/0927-0248(95)00030-5
Sulima, 2000, InGaAsSb photovoltaic cells with enhanced open-circuit voltage, IEEE Proc Optoelectron, 147, 199, 10.1049/ip-opt:20000500
Dashiell, 2006, Quaternary InGaAsSb thermophotovoltaic diodes, IEEE Trans Electron Dev, 53, 2879, 10.1109/TED.2006.885087
Popov, 1996, High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 μm, Appl Phys Lett, 68, 2790, 10.1063/1.116608
Zenker, 2001, Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells, IEEE Trans Electron Dev, 48, 367, 10.1109/16.902740
Utlu, 2018, vol. 307
Bouzid, 2012, Performance evaluation of a GaSb thermophotovoltaic converter, Rev Des Energies Renouvelables
Woolf, 2018, High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter, Optica, 5, 213, 10.1364/OPTICA.5.000213
Bani, 2018, Micro Combustion in a porous media for thermophotovoltaic power generation, Appl Therm Eng, 129, 10.1016/j.applthermaleng.2017.10.024
Kuwahara, 2006, Large eddy simulation of turbulent flow in porous media, Int Commun Heat Mass Trans, 33, 411, 10.1016/j.icheatmasstransfer.2005.12.011