Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye

Springer Science and Business Media LLC - Tập 25 - Trang 4446-4458 - 2017
Sana Khan1, Abdul Malik1
1Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India

Tóm tắt

Water pollution caused by the discharge of hazardous textile effluents is a serious environmental problem worldwide. In order to assess the pollution level of the textile effluents, various physico-chemical parameters were analyzed in the textile wastewater and agricultural soil irrigated with the wastewater (contaminated soil) using atomic absorption spectrophotometer and gas chromatography-mass spectrometry (GC-MS) analysis that demonstrated the presence of several toxic heavy metals (Ni, Cu, Cr, Pb, Cd, and Zn) and a large number of organic compounds. Further, in order to get a comprehensive idea about the toxicity exerted by the textile effluent, mung bean seed germination test was performed that indicated the reduction in percent seed germination and radicle-plumule growth. The culturable microbial populations were also enumerated and found to be significantly lower in the wastewater and contaminated soil than the ground water irrigated soil, thus indicating the biotic homogenization of indigenous microflora. Therefore, the study was aimed to develop a cost effective and ecofriendly method of textile waste treatment using native soil bacterium, identified as Arthrobacter soli BS5 by 16S rDNA sequencing that showed remarkable ability to degrade a textile dye reactive black 5 with maximum degradation of 98% at 37 °C and pH in the range of 5–9 after 120 h of incubation.

Tài liệu tham khảo

Ahmad K, Ejaz A, Azam M, Khan ZI, Ashraf M, Al-Qurainy F, Fardous A, Gondal S, Bayat AR, Valeem EE (2011) Lead, cadmium and chromium contents of canola irrigated with sewage water. Pak J Bot 43(2):1403–1410 Akhtar MF, Ashraf M, Anjum AA, Javeed A, Sharif A, Saleem A, Akhtar B (2016) Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats. Environ Toxicol Pharmacol 41:180–186. https://doi.org/10.1016/j.etap.2015.11.022 Aleem A, Malik A (2003) Genotoxic hazards of long-term application of wastewater on agricultural soil. Mutat Res Gen Tox En 538(1):145–154. https://doi.org/10.1016/S1383-5718(03)00110-4 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98(16):3149–3153. https://doi.org/10.1016/j.biortech.2006.10.008 APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Pollution Control Federation, and Water Environment Federation. 21st ed. APHA. Washington DC Asad S, Amoozegar MA, Pourbabaee A, Sarbolouki MN, Dastgheib SM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98(11):2082–2088. https://doi.org/10.1016/j.biortech.2006.08.020 Atashgahi S, Aydin R, Dimitrov MR, Sipkema D, Hamonts K, Lahti L, Maphosa F, Kruse T, Saccenti E, Springael D, Dejonghe W (2015) Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Sci Rep 5:17284 Bååth E, Diaz-Ravina M, Bakken LR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50(4):496–505. https://doi.org/10.1007/s00248-005-0008-3 Bagewadi ZK, Vernekar AG, Patil AY, Limaye AA, Jain VM (2011) Biodegradation of industrially important textile dyes by actinomycetes isolated from activated sludge. Biotechnol Bioinformatics Bioeng 1:351–360 Bilińska L, Gmurek M, Ledakowicz S (2016) Comparison between industrial and simulated textile wastewater treatment by AOPs-biodegradability, toxicity and cost assessment. Chem Eng J 306:550–559. https://doi.org/10.1016/j.cej.2016.07.100 Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79(6):1897–1905. https://doi.org/10.1128/AEM.03527-12 Du LN, Li G, Zhao YH, HK X, Wang Y, Zhou Y, Wang L (2015) Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: characteristics and partial mechanism. Int Biodeterior Biodegrad 105:66–72 El Bouraie M, El Din WS (2016) Biodegradation of reactive black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain Environ Res 26(5):209–216. https://doi.org/10.1016/j.serj.2016.04.014 Ghanem KM, Al-Fassi FA, Biag AK (2012) Optimization of methyl orange decolorization by mono and mixed bacterial culture techniques using statistical designs. Afr J Microbiol Res 6(2):436–446 Ghodake G, Jadhav U, Tamboli D, Kagalkar A, Govindwar S (2011) Decolorization of textile dyes and degradation of mono-azo dye amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian J Microbiol 51(4):501–508. https://doi.org/10.1007/s12088-011-0131-4 Gupta PK (2004) Methods in environmental analysis: water, soil and air. Upadesh Purohit, Agrobios, India Gupta P, Asthana M, Kumar A, Barun S (2014) Physicochemical analysis and microbial diversity of Yamuna water and industrial effluents. Int J Appl Sci Biotechnol 2(2):199–205 Haworth S, Lawlor T, Mortelmans K, Speck W, Zeiger E (1983) Salmonella mutagenicity test results for 250 chemicals. Environ Mol Mutagen 5(S1):3–49. https://doi.org/10.1002/em.2860050703 Hsueh CC, Chen BY (2007) Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J Hazard Mater 141(3):842–849. https://doi.org/10.1016/j.jhazmat.2006.07.056 Hu TL (1998) Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci Technol 38(4–5):299–306 Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresour Technol 101(1):165–173. https://doi.org/10.1016/j.biortech.2009.08.027 Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112 Jasińska A, Paraszkiewicz K, Sip A, Długoński J (2015) Malachite green decolorization by the filamentous fungus Myrothecium roridum-mechanistic study and process optimization. Bioresour Technol 194:43–48. https://doi.org/10.1016/j.biortech.2015.07.008 Joshi SM, Inamdar SA, Telke AA, Tamboli DP, Govindwar SP (2010) Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent. Int Biodeterior Biodegrad 64(7):622–628. https://doi.org/10.1016/j.ibiod.2010.07.001 Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99(11):4635–4641. https://doi.org/10.1016/j.biortech.2007.06.058 Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163(2):735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020 Kannan A, Upreti RK (2008) Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds. J Hazard Mater 153(1):609–615. https://doi.org/10.1016/j.jhazmat.2007.09.004 Kapanen A, Itavaara M (2001) Ecotoxicity tests for compost applications. Ecotoxicol Environ Saf 49(1):1–16. https://doi.org/10.1006/eesa.2000.1927 Karataş M, Dursun S (2007) Bio-decolourization of azo-dye under anaerobic batch conditions. J Int Environ Appl Sci 2(1&2):20–25 Kaur S, Mehra P (2012) Assessment of heavy metals in summer & winter seasons in river Yamuna segment flowing through Delhi, India. J Environ Econ 3(1):149–165 Kaur A, Vats S, Rekhi S, Bhardwaj A, Goel J, Tanwar RS, Gaur KK (2010) Physico-chemical analysis of the industrial effluents and their impact on the soil microflora. Procedia Environ Sci 2:595–599. https://doi.org/10.1016/j.proenv.2010.10.065 Khalid A, Batool S, Siddique MT, Nazli ZH, Bibi R, Mahmood S, Arshad M (2011) Decolorization of Remazol black-B azo dye in soil by fungi. Soil Environ 30(1):1–6 Khan S, Malik A (2016) Degradation of reactive black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 262(3):220–232 Knize MG, Takemoto BT, Lewis PR, Felton JS (1987) The characterization of the mutagenic activity of soil. Mutat Res Lett 192(1):23–30. https://doi.org/10.1016/0165-7992(87)90121-7 Kolekar YM, Powar SP, Gawai KR, Lokhande PD, Shouche YS, Kodam KM (2008) Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresour Technol 99(18):8999–9003. https://doi.org/10.1016/j.biortech.2008.04.073 Lenntech Water Treatment and Air Purification (2004) Water Treatment, Published by Lenntech, Rotterdamseweg, Netherlands. (www.excelwater.com/thp/filters/ Water-Purification.htm) Li HX, Xu B, Tang L, Zhang JH, Mao ZG (2015) Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. Int Biodeterior Biodegrad 103:30–37. https://doi.org/10.1016/j.ibiod.2015.04.007 Lotito AM, De Sanctis M, Di Iaconi C, Bergna G (2014) Textile wastewater treatment: aerobic granular sludge vs activated sludge systems. Water Res 54:337–346. https://doi.org/10.1016/j.watres.2014.01.055 Lu XM, Lu PZ (2014) Characterization of bacterial communities in sediments receiving various wastewater effluents with high-throughput sequencing analysis. Microb Ecol 67(3):612–623 Mahmood S, Arshad M, Khalid A, Nazli ZH, Mahmood T (2011) Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater. Soil Environ 30(1):7–12 Mahmoud MS (2016) Decolorization of certain reactive dye from aqueous solution using Baker’s yeast (Saccharomyces cerevisiae) strain. HBRC J 12(1):88–98. https://doi.org/10.1016/j.hbrcj.2014.07.005 Markowicz A, Płociniczak T, Piotrowska-Seget Z (2010) Response of bacteria to heavy metals measured as changes in FAME profiles. Pol J Environ Stud 19(5):957–965 Meigs JW, Marret LD, Ulrich FU, Flannery JT (1986) Bladder tumor incidence among workers exposed to benzidine: a 30-year follow-up. J Natl Cancer Inst 76(1):1–8 Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21(5):667–672. https://doi.org/10.1007/s11274-004-3612-3 Nirmalarani J, Janardhanan K (1988) Effect of South India viscose factory effluent on seed germination seedling growth and chloroplast pigments content in five varieties of maize (Zea mays I). Madras Agric J 75:41 Nosheen S, Rakhshanda N, Muhammad A, Amer J (2010) Accelerated biodecolorization of reactive dyes with added nitrogen and carbon sources. Int J Agric Biol 12(3):426–430 Oberly TJ, Bewsey BJ, Probst GS (1984) An evaluation of the L5178YTA+\- mouse lymphoma forward mutation assay using 42 chemicals. Mutat Res 125(2):291–306. https://doi.org/10.1016/0027-5107(84)90079-4 Omar HH (2008) Algal decolorization and degradation of monoazoand diazo dyes. Pak J Biol Sci 11(10):1310–1316. https://doi.org/10.3923/pjbs.2008.1310.1316 Panda UC, Sundaray SK, Rath P, Nayak BB, Bhatta D (2006) Application of factor and cluster analysis for characterization of river and estuarine water system-a case study: Mahanadi River (India). J Hydrol 331(3):434–445. https://doi.org/10.1016/j.jhydrol.2006.05.029 Paul SA, Chavan SK, Khambe SD (2012) Studies on characterization of textile industrial waste water in Solapur city. Int J Chem Sci 10(2):635–642 Prabha S, Gogoi A, Mazumder P, Ramanathan AL, Kumar M (2016) Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu. Appl Water Sci:1–11 Prokof'eva OG (1971) Induction of hepatic tumors in mice by benzidine. Vopr Onkol 17(5):61–64 Qin JJ, Htun M, Kekre KA (2007) Nanofiltration for recovering wastewater from a specific dyeing facility. Sep Purif Technol 56(2):199–203. https://doi.org/10.1016/j.seppur.2007.02.002 Ray PD, Yosim A, Fry RC (2014) Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet 5:201. https://doi.org/10.3389/fgene.2014.00201 Sangeetha J, Thangadurai D (2014) Effect of biologically treated petroleum sludge on seed germination and seedling growth of Vigna unguiculata (L.) Walp. (Fabaceae). Braz Arch Biol Technol 57(3):427–433. https://doi.org/10.1590/S1516-89132014005000011 Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157. https://doi.org/10.1016/j.jtice.2010.06.006 Saxena RM, Kewal PF, Yadav RS, Bhatnagar AK (1986) Impact of tannery effluents on some pulse crops. Ind J Environ Health 28(4):345–348 Seesuriyachan P, Kuntiya A, Sasaki K, Techapun C (2009) Comparative study on methyl orange removal by growing cells and washed cell suspensions of Lactobacillus casei TISTR 1500. World J Microbiol Biotechnol 25(6):973–979. https://doi.org/10.1007/s11274-009-9974-9 Shah MP, Patel KA, Nair SS, Darji AM (2013) Microbial degradation and decolourisation of reactive black by an application of Pseudomonas stutzeri ETL-79. OA. Biotechnology 2(2):13 Sharma N, Saxena S, Fatima M, Iram B, Datta A, Gupta S (2014) Microcosm analysis of untreated textile effluent for cod reduction by autochthonous bacteria. Int J Curr Res Chem Pharma Sci 1(5):15–23 Singh RP, Singh PK, Singh RL (2014) Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicol Int 21(2):160–166. https://doi.org/10.4103/0971-6580.139797 Spagni A, Casu S, Grilli S (2012) Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor. Bioresour Technol 117:180–185. https://doi.org/10.1016/j.biortech.2012.04.074 Subrahmanyam G, Shen JP, Liu YR, Archana G, He JZ (2014) Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India. Environ Monit Assess 186(7):4037–4050. https://doi.org/10.1007/s10661-014-3678-9 Thakur JK, Paul S, Dureja P, Annapurna K, Padaria JC, Gopal M (2014) Degradation of sulphonated azo dye red HE7B by Bacillus sp. and elucidation of degradative pathways. Curr Microbiol 69(2):183–191. https://doi.org/10.1007/s00284-014-0571-2 Tonogai Y, Ogawa S, Ito Y, Iwaida M (1982) Actual survey on TLm (median tolerance limit) values of environmental pollutants, especially on amines, nitriles, aromatic nitrogen compounds and artificial dyes. J Toxicol Sci 7(3):193–203. https://doi.org/10.2131/jts.7.193 US EPA (1985) Health and Environmental Effects Profile for Azobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC US EPA (1999) Announcement of Stakeholders Meeting on the Drinking Water Contaminant Identification and Selection Process, and the 6-Year Review of All Existing National Primary Drinking Water Regulations, as Required by the Safe Drinking Water Act, as Amended in 1996; Notice of Stakeholders Meeting. Fed Regist 64(198):55711 Vijayalakshmidevi SR, Muthukumar K (2015) Improved biodegradation of textile dye effluent by coculture. Ecotoxicol Environ Saf 114:23–30. https://doi.org/10.1016/j.ecoenv.2014.09.039 Wang W (1990) Toxicity assessment of pretreated industrial wastewaters using higher plants. Res J Water Pollut Control Fed 62:853–860 Wang H, Zheng XW, JQ S, Tian Y, Xiong XJ, Zheng TL (2009) Biological decolorization of the reactive dyes reactive black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171(1):654–659. https://doi.org/10.1016/j.jhazmat.2009.06.050 Wang ZW, Liang JS, Liang Y (2013) Decolorization of reactive black 5 by a newly isolated bacterium Bacillus sp. YZU1. Int Biodeterior Biodegrad 76:41–48. https://doi.org/10.1016/j.ibiod.2012.06.023 Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991 Wins JA, Murugan M (2010) Effect of textile mill effluent on growth and germination of black gram-Vigna mungo (L.) Hepper. Int. J Pharm Bio Sci 1(1):1–7 Yasmin A, Nawaz SO, Ali SM (2011) Impact of industrial effluents on germination and seedling growth of Lens Esculentum varieties. Pak J Bot 43(6):2759–2763 Zuberer DA (1994) Recovery and enumeration of viable bacteria. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis: part 2-microbiological and biochemical properties (Methods of Soil An 2) (pp. 119–144). Soil Science Society of America, Inc.