The interplay between immunosenescence and age-related diseases
Tóm tắt
Từ khóa
Tài liệu tham khảo
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25:1822–1832. https://doi.org/10.1038/s41591-019-0675-0
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Franceschi C, Bonafè M, Valensin S, Olivieri F, de Luca M, Ottaviani E, de Benedictis G (2000) Inflamm-aging: an evolutionary perspective on Immunosenescence. Ann N Y Acad Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28:199–212. https://doi.org/10.1016/j.tem.2016.09.005
Sun Y, Coppé JP, Lam EWF (2018) Cellular senescence: the sought or the unwanted? Trends Mol Med 24:871–885. https://doi.org/10.1016/j.molmed.2018.08.002
Chen JM, Cui GH, Jiang GX, Xu RF, Tang HD, Wang G, Chen SD, Cheng Q (2014) Cognitive impairment among elderly individuals in Shanghai suburb, China: association of C-reactive protein and its interactions with other relevant factors. Am J Alzheimers Dis Other Dement 29:712–717. https://doi.org/10.1177/1533317514534758
Komulainen P, Lakka TA, Kivipelto M, Hassinen M, Penttila IM, Helkala EL, Gylling H, Nissinen A, Rauramaa R (2007) Serum high sensitivity C-reactive protein and cognitive function in elderly women. Age Ageing 36:443–448. https://doi.org/10.1093/ageing/afm051
Lindqvist D, Hall S, Surova Y, Nielsen HM, Janelidze S, Brundin L, Hansson O (2013) Cerebrospinal fluid inflammatory markers in Parkinson’s disease - associations with depression, fatigue, and cognitive impairment. Brain Behav Immun 33:183–189. https://doi.org/10.1016/j.bbi.2013.07.007
Trollor JN, Smith E, Agars E, Kuan SA, Baune BT, Campbell L, Samaras K, Crawford J, Lux O, Kochan NA, Brodaty H, Sachdev P (2012) The association between systemic inflammation and cognitive performance in the elderly: the Sydney memory and ageing study. Age (Omaha) 34:1295–1308. https://doi.org/10.1007/s11357-011-9301-x
Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, Tylavsky FA, Newman AB (2004) The metabolic syndrome, inflammation, and risk of cognitive decline. J Am Med Assoc 292:2237–2242. https://doi.org/10.1001/jama.292.18.2237
Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741. https://doi.org/10.1016/j.biopsych.2008.11.029
Di Benedetto S, Müller L, Wenger E et al (2017) Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 75:114–128. https://doi.org/10.1016/j.neubiorev.2017.01.044
Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R (2007) A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32:1106–1115. https://doi.org/10.1016/j.psyneuen.2007.09.004
Strioga M, Pasukoniene V, Characiejus D (2011) CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 134:17–32. https://doi.org/10.1111/j.1365-2567.2011.03470.x
Larbi A, Pawelec G, Witkowski JM, Schipper HM, Derhovanessian E, Goldeck D, Fulop T (2009) Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J Alzheimers Dis 17:91–103. https://doi.org/10.3233/JAD-2009-1015
Serre-Miranda C, Roque S, Santos NC et al (2015) Effector memory CD4+ T cells are associated with cognitive performance in a senior population. Neurol Neuroimmunol NeuroInflammation 2:e54. https://doi.org/10.1212/NXI.0000000000000054
Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, Chen K, Lehallier B, Channappa D, de Los Santos MB, McBride A, Pluvinage J, Elahi F, Tam GKY, Kim Y, Greicius M, Wagner AD, Aigner L, Galasko DR, Davis MM, Wyss-Coray T (2020) Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577:399–404. https://doi.org/10.1038/s41586-019-1895-7
Ritzel RM, Crapser J, Patel AR, Verma R, Grenier JM, Chauhan A, Jellison ER, McCullough LD (2016) Age-associated resident memory CD8 T cells in the central nervous system are primed to potentiate inflammation after ischemic brain injury. J Immunol 196:3318–3330. https://doi.org/10.4049/jimmunol.1502021
Katsel P, Haroutunian V (2019) Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. Dialogues Clin Neurosci 21:7–19
Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M (2004) T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A 101:8180–8185. https://doi.org/10.1073/pnas.0402268101
Syrjälä H, Surcel H-M, Ilonen J (1991) Low CD4/CD8 T lymphocyte ratio in acute myocardial infarction. Clin Exp Immunol 83:326–328. https://doi.org/10.1111/j.1365-2249.1991.tb05636.x
Wikby A, Ferguson FG, Forsey RJ, Thompson J, Strindhall J, Lofgren S, Nilsson BO, Ernerudh J, Pawelec G, Johansson B (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol Ser A 60:556–565
Luz Correa B, Ornaghi AP, Cerutti Muller G, Engroff P, Pestana Lopes R, Gomes da Silva Filho I, Bosch JA, Bonorino C, Bauer ME (2014) The inverted CD4:CD8 ratio is associated with cytomegalovirus, poor cognitive and functional states in older adults. Neuroimmunomodulation 21:206–212. https://doi.org/10.1159/000356827
Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K (2018) Rheumatoid arthritis. Nat Rev Dis Prim 4:1–23. https://doi.org/10.1038/nrdp.2018.1
Doran MF, Pond GR, Crowson CS, O'Fallon WM, Gabriel SE (2002) Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum 46:625–631. https://doi.org/10.1002/art.509
van Onna M, Boonen A (2016) The challenging interplay between rheumatoid arthritis, ageing and comorbidities. BMC Musculoskelet Disord 17:184. https://doi.org/10.1186/s12891-016-1038-3
Bauer ME (2020) Accelerated immunosenescence in rheumatoid arthritis: impact on clinical progression. Immun Ageing 17:6. https://doi.org/10.1186/s12979-020-00178-w
Pawlik A, Ostanek L, Brzosko I, Brzosko M, Masiuk M, Machalinski B, Gawronska-Szklarz B (2003) The expansion of CD4+CD28- T cells in patients with rheumatoid arthritis. Arthritis Res Ther 5:R210–R213. https://doi.org/10.1186/ar766
Petersen LE, Grassi-Oliveira R, Siara T, Ribeiro dos Santos SG, Ilha M, de Nardi T, Keisermann M, Bauer ME (2015) Premature immunosenescence is associated with memory dysfunction in rheumatoid arthritis. Neuroimmunomodulation 22:130–137. https://doi.org/10.1159/000358437
Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157. https://doi.org/10.1111/j.0105-2896.2005.00259.x
Martens PB, Goronzy JJ, Schaid D, Weyand CM (1997) Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum 40:1106–1114. https://doi.org/10.1002/art.1780400615
Sallusto F, Lenig D, Forster R et al (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712. https://doi.org/10.1038/44385
Del Rey MJ, Valín Á, Usategui A et al (2019) Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun Ageing 16:1–9. https://doi.org/10.1186/s12979-019-0169-4
Goronzy JJ, Matteson EL, Fulbright JW et al (2004) Prognostic markers of radiographic progression in early rheumatoid arthritis. Arthritis Rheum 50:43–54. https://doi.org/10.1002/art.11445
Bryl E, Vallejo AN, Matteson EL, Witkowski JM, Weyand CM, Goronzy JJ (2005) Modulation of CD28 expression with anti-tumor necrosis factor α therapy in rheumatoid arthritis. Arthritis Rheum 52:2996–3003. https://doi.org/10.1002/art.21353
Scarsi M, Ziglioli T, Airo P (2010) Decreased circulating CD28-negative T cells in patients with rheumatoid arthritis treated with abatacept are correlated with clinical response. J Rheumatol 37:911–916. https://doi.org/10.3899/jrheum.091176
Solomon DH, Reed GW, Kremer JM, Curtis JR, Farkouh ME, Harrold LR, Hochberg MC, Tsao P, Greenberg JD (2015) Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheum 67:1449–1455. https://doi.org/10.1002/art.39098
Gerli R, Schillaci G, Giordano A, Bocci EB, Bistoni O, Vaudo G, Marchesi S, Pirro M, Ragni F, Shoenfeld Y, Mannarino E (2004) CD4+CD28- T lymphocytes contribute to early atherosclerotic damage in rheumatoid arthritis patients. Circulation 109:2744–2748. https://doi.org/10.1161/01.CIR.0000131450.66017.B3
Dumitriu IE, Araguás ET, Baboonian C, Kaski JC (2009) CD4+CD28null T cells in coronary artery disease: when helpers become killers. Cardiovasc Res 81:11–19. https://doi.org/10.1093/cvr/cvn248
Koller L, Richter B, Goliasch G, Blum S, Korpak M, Zorn G, Brekalo M, Maurer G, Wojta J, Pacher R, Hülsmann M, Niessner A (2013) CD4+CD28null cells are an independent predictor of mortality in patients with heart failure. Atherosclerosis 230:414–416. https://doi.org/10.1016/j.atherosclerosis.2013.08.008
Ormseth MJ, Solus JF, Oeser AM, Bian A, Gebretsadik T, Shintani A, Raggi P, Stein CM (2016) Telomere length and coronary atherosclerosis in rheumatoid arthritis. J Rheumatol 43:1469–1474. https://doi.org/10.3899/jrheum.151115
Prelog M (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev 5:136–139. https://doi.org/10.1016/j.autrev.2005.09.008
Petersen LE, Baptista TSA, Molina JK, Motta JG, do Prado A, Piovesan DM, de Nardi T, Viola TW, Vieira ÉLM, Teixeira AL, Grassi-Oliveira R, Bauer ME (2018) Cognitive impairment in rheumatoid arthritis: role of lymphocyte subsets, cytokines and neurotrophic factors. Clin Rheumatol 37:1171–1181. https://doi.org/10.1007/s10067-018-3990-9
Baptista TSA, Petersen LE, Molina JK, de Nardi T, Wieck A, do Prado A, Piovesan DM, Keisermann M, Grassi-Oliveira R, Bauer ME (2017) Autoantibodies against myelin sheath and S100β are associated with cognitive dysfunction in patients with rheumatoid arthritis. Clin Rheumatol 36:1959–1968. https://doi.org/10.1007/s10067-017-3724-4
Hamed SA, Selim ZI, Elattar AM, Elserogy YM, Ahmed EA, Mohamed HO (2012) Assessment of biocorrelates for brain involvement in female patients with rheumatoid arthritis. Clin Rheumatol 31:123–132. https://doi.org/10.1007/s10067-011-1795-1
Pavlidis N, Stanta G, Audisio RA (2012) Cancer prevalence and mortality in centenarians: a systematic review. Crit Rev Oncol Hematol 83:145–152. https://doi.org/10.1016/j.critrevonc.2011.09.007
Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727. https://doi.org/10.1038/nri1936
Teng MWL, Kershaw MH, Smyth MJ (2013) Cancer immunoediting: from surveillance to escape. In: Cancer immunotherapy, 2nd edn. Immune suppression and tumor growth 3:85–99. https://doi.org/10.1016/B978-0-12-394296-8.00007-5
Swann JB, Smyth MJ (2007) Review series immune surveillance of tumors. J Clin Invest 117:1137–1146. https://doi.org/10.1172/JCI31405.antigens
Fulop T, Larbi A, Kotb R, Pawelec G (2013) Immunology of aging and cancer development. Interdiscip Top Gerontol 38:38–48. https://doi.org/10.1159/000343599
Hotta K, Sho M, Fujimoto K, Shimada K, Yamato I, Anai S, Konishi N, Hirao Y, Nonomura K, Nakajima Y (2011) Prognostic significance of CD45RO memory T cells in renal cell carcinoma. Br J Cancer 105:1191–1196. https://doi.org/10.1038/bjc.2011.368
Trintinaglia L, Bandinelli LP, Grassi-Oliveira R, Petersen LE, Anzolin M, Correa BL, Schuch JB, Bauer ME (2018) Features of immunosenescence in women newly diagnosed with breast cancer. Front Immunol 9:1651. https://doi.org/10.3389/fimmu.2018.01651
Song G, Wang X, Jia J, Yuan Y, Wan F, Zhou X, Yang H, Ren J, Gu J, Lyerly HK (2013) Elevated level of peripheral CD8+CD28- T lymphocytes are an independent predictor of progression-free survival in patients with metastatic breast cancer during the course of chemotherapy. Cancer Immunol Immunother 62:1123–1130. https://doi.org/10.1007/s00262-013-1424-8
Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M, Ferrari M, Cosentino M, Marino F, Pozzi E, Fietta AM (2006) Foxp3 expressing CD4+ CD25+ and CD8+CD28- T regulatory cells in the peripheral blood of patients with lung Cancer and pleural mesothelioma. Hum Immunol 67:1–12. https://doi.org/10.1016/j.humimm.2005.11.005
Chen IH, Lai YL, Wu CL, Chang YF, Chu CC, Tsai IF, Sun FJ, Lu YT (2010) Immune impairment in patients with terminal cancers: influence of cancer treatments and cytomegalovirus infection. Cancer Immunol Immunother 59:323–334. https://doi.org/10.1007/s00262-009-0753-0
Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DME (2013) Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 93:633–637. https://doi.org/10.1189/jlb.0912461
Fane M, Weeraratna AT (2020) How the ageing microenvironment influences tumour progression. Nat Rev Cancer 20:89–106. https://doi.org/10.1038/s41568-019-0222-9
Bauer ME, De la Fuente M (2016) The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev 158:27–37. https://doi.org/10.1016/j.mad.2016.01.001
Fülöp T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:1–9. https://doi.org/10.3389/fimmu.2013.00271
Bonafè M, Valensin S, Gianni W, Marigliano V, Franceschi C (2001) The unexpected contribution of immunosenescence to the leveling off of cancer incidence and mortality in the oldest old. Crit Rev Oncol Hematol 39:227–233. https://doi.org/10.1016/S1040-8428(01)00168-8
Kouidhi S, Elgaaied AB, Chouaib S (2017) Impact of metabolism on T-cell differentiation and function and cross talk with tumor microenvironment. Front Immunol 8:270. https://doi.org/10.3389/fimmu.2017.00270
Pan W, Du J, Shi M et al (2017) Short leukocyte telomere length, alone and in combination with smoking, contributes to increased risk of gastric cancer or esophageal squamous cell carcinoma. Carcinogenesis 38:12–18. https://doi.org/10.1093/carcin/bgw111
Jia H, Wang Z (2016) Telomere length as a prognostic factor for overall survival in colorectal cancer patients. Cell Physiol Biochem 38:122–128. https://doi.org/10.1159/000438614
Fulop T, Witkowski JM, Pawelec G et al (2014) On the immunological theory of aging. Aging Facts Theor 39:163–176. https://doi.org/10.1159/000358904
Pawelec G (2018) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9. https://doi.org/10.1016/j.exger.2017.10.024
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4
Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522. https://doi.org/10.1038/s41569-018-0064-2
Soysal P, Arik F, Smith L et al (2020) Inflammation, frailty and cardiovascular disease. Adv Exp Med Biol 1216:55–64. https://doi.org/10.1007/978-3-030-33330-0_7
Barton M, Husmann M, Meyer MR (2016) Accelerated vascular aging as a paradigm for hypertensive vascular disease: prevention and therapy. Can J Cardiol 32:680–686.e4. https://doi.org/10.1016/j.cjca.2016.02.062
Biasucci LM, La Rosa G, Pedicino D et al (2017) Where does inflammation fit? Curr Cardiol Rep 19:1–10. https://doi.org/10.1007/s11886-017-0896-0
Zhu F, Li Y, Zhang J, Piao C, Liu T, Li HH, du J (2016) Functional plasticity of adipose-derived stromal cells during development of obesity. Stem Cells Transl Med 5:893–900. https://doi.org/10.1371/journal.pone.0074535
Sanz-González SM, Barquín L, García-Cao I et al (2007) Increased p53 gene dosage reduces neointimal thickening induced by mechanical injury but has no effect on native atherosclerosis. Cardiovasc Res 75:803–812. https://doi.org/10.1016/j.cardiores.2007.05.002
Merino A, Buendia P, Martin-Malo A, Aljama P, Ramirez R, Carracedo J (2011) Senescent CD14 + CD16 + monocytes exhibit proinflammatory and proatherosclerotic activity. J Immunol 186:1809–1815. https://doi.org/10.4049/jimmunol.1001866
Franceschi C, Campisi J (2014) Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases. J Gerontol - Ser A Biol Sci Med Sci 69:S4–S9. https://doi.org/10.1093/gerona/glu057
Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL, Betteridge DJ, Emery V, Colhoun HM, Vallance P (2003) Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation 108:678–683. https://doi.org/10.1161/01.CIR.0000084505.54603.C7
Grahame-Clarke C (2005) Human cytomegalovirus, endothelial function and atherosclerosis. Herpes 12:42–45
Tae Yu H, Youn JC, Lee J, Park S, Chi HS, Lee J, Choi C, Park S, Choi D, Ha JW, Shin EC (2015) Characterization of CD8+ CD57+ T cells in patients with acute myocardial infarction. Cell Mol Immunol 12:466–473. https://doi.org/10.1038/cmi.2014.74
Fulop T, Franceschi C, Hirokawa K, Pawelec G (2019) Handbook of Immunosenescence, 2a. Springer International Publishing, Cham
Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185. https://doi.org/10.1038/nature21363
Hotamisligil GS, Peraldi P, Budavari A et al (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science (80-) 271:665–670. https://doi.org/10.1126/science.271.5249.665
Nagareddy PR, Murphy AJ, Stirzaker RA, Hu Y, Yu S, Miller RG, Ramkhelawon B, Distel E, Westerterp M, Huang LS, Schmidt AM, Orchard TJ, Fisher EA, Tall AR, Goldberg IJ (2013) Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17:695–708. https://doi.org/10.1016/j.cmet.2013.04.001
Ho LY, Kim SR, Han DH et al (2019) Senescent T cells predict the development of hyperglycemia in humans. Diabetes 68:156–162. https://doi.org/10.2337/db17-1218
Komura T, Sakai Y, Honda M, Takamura T, Matsushima K, Kaneko S (2010) CD14+ monocytes are vulnerable and functionally impaired under endoplasmic reticulum stress in patients with type 2 diabetes. Diabetes 59:634–643. https://doi.org/10.2337/db09-0659
Lecube A, Pachón G, Petriz J, Hernández C, Simó R (2011) Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PLoS One 6:e23366. https://doi.org/10.1371/journal.pone.0023366
Salvestrini V, Sell C, Lorenzini A (2019) Obesity may accelerate the aging process. Front Endocrinol (Lausanne) 10:266. https://doi.org/10.3389/fendo.2019.00266
Trim W, Turner JE, Thompson D (2018) Parallels in immunometabolic adipose tissue dysfunction with ageing and obesity. Front Immunol 9:169. https://doi.org/10.3389/fimmu.2018.00169
Hunsche C, Hernandez O, De La Fuente M (2016) Impaired immune response in old mice suffering from obesity and premature immunosenescence in adulthood. J Gerontol - Ser A Biol Sci Med Sci 71:983–991. https://doi.org/10.1093/gerona/glv082
Parisi MM, Grun LK, Lavandoski P, Alves LB, Bristot IJ, Mattiello R, Mottin CC, Klamt F, Jones MH, Padoin AV, Guma FCR, Barbé-Tuana FM (2017) Immunosenescence induced by plasma from individuals with obesity caused cell signaling dysfunction and inflammation. Obesity 25:1523–1531. https://doi.org/10.1002/oby.21888
Grun LK, da Rosa Teixeira N, von Mengden L et al (2018) TRF1 as a major contributor for telomeres’ shortening in the context of obesity. Free Radic Biol Med 129:286–295. https://doi.org/10.1016/j.freeradbiomed.2018.09.039
Spielmann G, Johnston CA, O’Connor DP et al (2014) Excess body mass is associated with T cell differentiation indicative of immune ageing in children. Clin Exp Immunol 176:246–254. https://doi.org/10.1111/cei.12267
Tagliabue C, Principi N, Giavoli C, Esposito S (2016) Obesity: impact of infections and response to vaccines. Eur J Clin Microbiol Infect Dis 35:325–331. https://doi.org/10.1007/s10096-015-2558-8
Paich HA, Sheridan PA, Handy J, Karlsson EA, Schultz-Cherry S, Hudgens MG, Noah TL, Weir SS, Beck MA (2013) Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza a virus. Obesity 21:2377–2386. https://doi.org/10.1002/oby.20383
Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa JI, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T H 2 cytokines by adipose tissue-associated c-Kit + Sca-1 + lymphoid cells. Nature 463:540–544. https://doi.org/10.1038/nature08636
Hui RZ, Kim EK, Kim H, Claycombe KJ (2007) Obesity-associated mouse adipose stem cell secretion of monocyte chemotactic protein-1. Am J Physiol Endocrinol Metab 293:E1153–E1158. https://doi.org/10.1152/ajpendo.00186.2007
Frasca D, Ferracci F, Diaz A, Romero M, Lechner S, Blomberg BB (2016) Obesity decreases B cell responses in young and elderly individuals. Obesity 24:615–625. https://doi.org/10.1002/oby.21383
DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS, McDonnell ME, Apovian C, Denis GV, Nikolajczyk BS (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A 110:5133–5138. https://doi.org/10.1073/pnas.1215840110
Frasca D, Diaz A, Romero M, Blomberg BB (2020) Leptin induces immunosenescence in human B cells. Cell Immunol 348:103994. https://doi.org/10.1016/j.cellimm.2019.103994
Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB (2014) High TNF-α levels in resting B cells negatively correlate with their response. Exp Gerontol 54:116–122. https://doi.org/10.1016/j.exger.2014.01.004
Taipa R, das Neves SP, Sousa AL et al (2019) Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol Aging 76:125–132. https://doi.org/10.1016/j.neurobiolaging.2018.12.019
Scheiblich H, Trombly M, Ramirez A, Heneka MT (2020) Neuroimmune connections in aging and neurodegenerative diseases. Trends Immunol 41:300–312. https://doi.org/10.1016/j.it.2020.02.002
Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070. https://doi.org/10.1161/STROKEAHA.112.659656
Rossol M, Kraus S, Pierer M, Baerwald C, Wagner U (2012) The CD14 brightCD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum 64:671–677. https://doi.org/10.1002/art.33418
Schauer D, Starlinger P, Reiter C, Jahn N, Zajc P, Buchberger E, Bachleitner-Hofmann T, Bergmann M, Stift A, Gruenberger T, Brostjan C (2012) Intermediate monocytes but not TIE2-expressing monocytes are a sensitive diagnostic Indicator for colorectal Cancer. PLoS One 7:e44450. https://doi.org/10.1371/journal.pone.0044450
Yang M, Gan H, Shen Q, Tang W, du X, Chen D (2012) Proinflammatory CD14 +CD16 + monocytes are associated with microinflammation in patients with type 2 diabetes mellitus and diabetic nephropathy uremia. Inflammation 35:388–396. https://doi.org/10.1007/s10753-011-9374-9
Anani W, Shurin MR (2017) Targeting myeloid-derived suppressor cells in cancer. In: Advances in Experimental Medicine and Biology. Springer New York LLC, New York, pp 105–128
Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age review-article. Nat Immunol 19:108–119. https://doi.org/10.1038/s41590-017-0022-x
Koetz K, Bryl E, Spickschen K, O'Fallon WM, Goronzy JJ, Weyand CM (2000) T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci U S A 97:9203–9208. https://doi.org/10.1073/pnas.97.16.9203
Wagner UG, Koetz K, Weyand CM, Goronzy JJ (1998) Perturbation of the T cell repertoire in rheumatoid arthritis. Proc Natl Acad Sci U S A 95:14447–14452. https://doi.org/10.1073/pnas.95.24.14447
Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, Chen W, Zhang C, Zhang Y (2016) Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol 13:167–179
Lurain NS, Hanson BA, Martinson J, Leurgans SE, Landay AL, Bennett DA, Schneider JA (2013) Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis 15:564–572. https://doi.org/10.1093/infdis/jit210
Pierer M, Rothe K, Quandt D, Schulz A, Rossol M, Scholz R, Baerwald C, Wagner U (2012) Association of anticytomegalovirus seropositivity with more severe joint destruction and more frequent joint surgery in rheumatoid arthritis. Arthritis Rheum 64:1740–1749. https://doi.org/10.1002/art.34346
Moro-García MA, López-Iglesias F, Marcos-Fernández R, Bueno-García E, Díaz-Molina B, Lambert JL, Suárez-García FM, Morís de la Tassa C, Alonso-Arias R (2018) More intensive CMV-infection in chronic heart failure patients contributes to higher T-lymphocyte differentiation degree. Clin Immunol 192:20–29. https://doi.org/10.1016/j.clim.2018.03.015
Blum A, Peleg A, Weinberg M (2003) Anti-cytomegalovirus (CMV) IgG antibody titer in patients with risk factors to atherosclerosis. Clin Exp Med 3:157–160. https://doi.org/10.1007/s10238-003-0019-7
Wu J, Li L (2016) Autoantibodies in Alzheimer’s disease: potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res 30:361–372
Zerche M, Weissenborn K, Ott C et al (2015) Preexisting serum autoantibodies against the NMDAR subunit NR1 modulate evolution of lesion size in acute ischemic stroke. Stroke 46:1180–1186. https://doi.org/10.1161/STROKEAHA.114.008323